
Designed for a one-semester course, Introduction to Numerical Analysis
and Scientific Computing presents fundamental concepts of numerical
mathematics and explains how to implement and program numerical
methods. The classroom-tested text helps students understand floating
point number representations, particularly those pertaining to IEEE simple
and double-precision standards as used in scientific computer environments
such as MATLAB® version 7.

Drawing on their years of teaching students in mathematics, engineering,
and the sciences, the authors discuss computer arithmetic as a source
for generating round-off errors and how to avoid the use of algebraic
expressions that may lead to loss of significant figures. They cover nonlinear
equations, linear algebra concepts, the Lagrange interpolation theorem,
numerical differentiation and integration, and ODEs. They also focus on the
implementation of the algorithms using MATLAB®.

Features
• Helps students understand floating point number representations,

particularly those pertaining to IEEE simple and double-precision
standards used in computer environments such as MATLAB®

• Explains how computer arithmetic is a source for generating round-off
errors

• Presents iterative methods for obtaining accurate approximations to
roots of nonlinear equations

• Covers numerical linear algebra concepts, the Lagrange interpolation
theorem, and formulae for numerical differentiation and integration

• Illustrates the solution of ODEs using Runge-Kutta methods
• Expresses each numerical method using either pseudo-code or a

detailed MATLAB® program
• Includes a large number of exercises and several computer projects

Each chapter ends with a large number of exercises, with answers to odd-
numbered exercises provided at the end of the book. Throughout the seven
chapters, several computer projects are proposed. These test the students’
understanding of both the mathematics of numerical methods and the art
of computer programming.

K20409

Mathematics

Introduction to Num
erical Analysis and Scientific Com

puting
N

assif • Fayyad
N

assif • Fayyad
Introduction to Num

erical Analysis and Scientific Com
puting

K20409_Cover.indd 1 6/26/13 10:47 AM

I n t r o d u c t i o n t o

Numerical
A n a lys i s

and
Scientific
Computing

K20409_FM.indd 1 6/18/13 10:58 AM

© 2014 by Taylor & Francis Group, LLC

K20409_FM.indd 2 6/18/13 10:58 AM

© 2014 by Taylor & Francis Group, LLC

I n t r o d u c t i o n t o

Numerical
A n a lys i s

and
Scientific
Computing

Nabil Nassif
Dolly Khuwayri Fayyad

K20409_FM.indd 3 6/18/13 10:58 AM

© 2014 by Taylor & Francis Group, LLC

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® soft-
ware or related products does not constitute endorsement or sponsorship by The MathWorks of a particular
pedagogical approach or particular use of the MATLAB® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130618

International Standard Book Number-13: 978-1-4665-8949-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

© 2014 by Taylor & Francis Group, LLC

Dedication

To the dear and supporting members of our respective families:

Norma, Nabil-John and Nadim Nassif

Georges, Ghassan and Zeina Fayyad

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

Contents

Preface xi

About the Authors xiii

List of Figures xv

List of Tables xvii

1 Computer Number Systems and Floating Point Arithmetic 1

1.1 Introduction . 1

1.2 Conversion from Base 10 to Base 2 3

1.2.1 Conversion of the Integral Part 3

1.2.2 Conversion of the Fractional Part 7

1.3 Conversion from Base 2 to Base 10 9

1.3.1 Polynomial Evaluation 9

1.3.2 Conversion of the Integral Part 10

1.3.3 Conversion of the Fractional Part 11

1.4 Normalized Floating Point Systems 12

1.4.1 Introductory Concepts 12

1.4.2 IEEE Floating Point Systems 18

1.4.3 Denormalized Numbers in MATLAB 23

1.4.4 Rounding Errors in Floating Point Representation of
Numbers . 24

1.5 Floating Point Operations 27

1.5.1 Algebraic Properties in Floating Point Operations . . 29

1.5.2 The Problem of Absorption 30

1.5.3 The Problem of Cancellation or Loss of Precision . . . 32

1.6 Computing in a Floating Point System 35

1.6.1 Cardinality and Distribution of Special Floating Point
System . 35

1.6.2 A MATLAB Simulation of a Floating Point System . . . 36

1.6.3 Tips for Floating Point Computation 37

1.7 Exercises . 38

1.8 Computer Projects . 44

vii

© 2014 by Taylor & Francis Group, LLC

viii

2 Finding Roots of Real Single-Valued Functions 49

2.1 Introduction . 49

2.2 How to Locate the Roots of a Function 51

2.3 The Bisection Method . 53

2.4 Newton’s Method . 58

2.5 The Secant Method . 67

2.6 Exercises . 73

2.7 Computer Projects . 78

3 Solving Systems of Linear Equations by Gaussian Elimina-
tion 83

3.1 Mathematical Preliminaries 83

3.2 Computer Storage and Data Structures for Matrices 85

3.3 Back Substitution for Upper Triangular Systems 86

3.4 Gauss Reduction . 89

3.4.1 Naive Gauss Elimination 91

3.4.2 Partial Pivoting Strategies: Unscaled (Simple) and
Scaled Partial Pivoting 93

3.5 LU Decomposition . 102

3.5.1 Computing the Determinant of a Matrix 104

3.5.2 Computing the Inverse of A 105

3.5.3 Solving Linear Systems Using LU Factorization 107

3.6 Exercises . 108

3.7 Computer Projects . 114

4 Polynomial Interpolation and Splines Fitting 121

4.1 Definition of Interpolation 121

4.2 General Lagrange Polynomial Interpolation 122

4.3 Recurrence Formulae . 125

4.3.1 Neville’s Formula . 125

4.3.2 Newton’s Form for the Interpolation Polynomial . . . 127

4.3.3 Construction of Divided Differences and Implementa-
tion of Newton’s Formula 129

4.4 Equally Spaced Data: Difference Operators 133

4.5 Errors in Polynomial Interpolation 136

4.6 Local Interpolation: Spline Functions 139

4.6.1 Linear Spline Interpolation 139

4.6.2 Quadratic Spline Interpolation 141

4.6.3 Cubic Spline Interpolation 144

4.6.4 Solving a Tridiagonal System 150

4.6.5 Errors in Spline Interpolation 151

4.7 Concluding Remarks . 153

4.8 Exercises . 154

4.9 Computer Projects . 161

© 2014 by Taylor & Francis Group, LLC

ix

5 Numerical Differentiation and Integration 165

5.1 Introduction . 165

5.2 Mathematical Prerequisites 166

5.3 Numerical Differentiation . 167

5.3.1 Approximation of First Derivatives: Error Analysis . . 168

5.3.2 Approximation of Second Derivatives: Error Analysis . 172

5.4 Richardson Extrapolation . 174

5.5 Richardson Extrapolation in Numerical Differentiation . . . 176

5.5.1 Richardson Extrapolation for First Derivatives 176

5.5.2 Second Order Derivatives and Richardson Extrapola-
tion . 180

5.6 Numerical Integration . 181

5.6.1 The Rectangular Rules 182

5.6.2 The Trapezoidal Rule 184

5.6.3 The Midpoint Rectangular Rule 186

5.6.4 Recurrence Relation between Trapezoid and Midpoint
Rules . 188

5.6.5 Simpson’s Rule . 189

5.7 Romberg Integration . 192

5.8 Appendix: Error Expression for the Midpoint Rule when h =
b−a
2l

. 195

5.9 Exercises . 197

5.10 Computer Projects . 205

6 Advanced Numerical Integration 209

6.1 Numerical Integration for Non-Uniform Partitions 209

6.1.1 Generalized Formulae and Error Analysis 209

6.1.2 The Case for Adaptive Numerical Integration 211

6.1.3 Adaptive Simpson’s Integration 211

6.2 Numerical Integration of Functions of Two Variables 216

6.2.1 Double Integrals over Rectangular Domains 216

6.2.2 Double Rectangular Rule 217

6.2.3 Double Trapezoidal and Midpoint Rules 218

6.2.4 Double Simpson’s Rule 218

6.2.5 Error Estimates . 219

6.2.6 Double Integrals over Convex Polygonal Domains . . . 221

6.3 Monte Carlo Simulations for Numerical Quadrature 226

6.3.1 On Random Number Generation 226

6.3.2 Estimation of Integrals through Areas and Volumes . 227

6.3.3 Estimating Mean Values 230

6.4 Exercises . 232

6.5 Computer Exercises . 234

© 2014 by Taylor & Francis Group, LLC

x

7 Numerical Solutions of Ordinary Differential Equations
(ODEs) 235
7.1 Introduction . 235
7.2 Analytic Solutions to ODEs 238
7.3 Mathematical Settings for Numerical Solutions to ODEs . . 242
7.4 Explicit Runge-Kutta Schemes 247

7.4.1 Euler Explicit Method 247
7.4.2 Second-Order Explicit Runge-Kutta Methods 249
7.4.3 General Explicit Runge-Kutta Methods 253
7.4.4 Control of the Time-Step Size 259

7.5 Adams Multistep Methods 264
7.5.1 Adams Schemes of Order 1 265
7.5.2 Adams Schemes of Order 2 265
7.5.3 Adams Schemes of Order 3 266
7.5.4 Adams Methods of Order 4 267

7.6 Multistep Backward Difference Formulae 267
7.7 Approximation of a Two-Points Boundary Value Problem . . 270
7.8 Exercises . 273
7.9 Computer Exercises . 275

Answers to Odd-Numbered Exercises 277

Bibliography 305

Index 307

© 2014 by Taylor & Francis Group, LLC

Preface

This work is the result of several years of teaching a one semester course on
numerical analysis and scientific computing, addressed primarily to students in
mathematics, engineering, and the sciences. Our purpose is to provide those
students with fundamental concepts of numerical mathematics and at the
same time stir their interest in the art of implementing and programming
numerical methods.
The learning objectives of this book are mainly to have the students:

1. Understand floating-point number representations, particularly those
pertaining to IEEE simple and double precision standards as being
used in the scientific computer environment such as MATLABr version
7. Please note that:
MATLAB r is a registered trademark of The Math Works, Inc.
For product information, please contact:
The Math Works Inc.
3 Apple Hill Drive
Natick, MA 01 760-20098 USA
Tel: 508 647 7000
Fax: 508 647 7001
E-mail: info@mathworks.com
Web: www.mathworks.com

2. Understand computer arithmetic as a source for generating round-off
errors and be able to avoid the use of algebraic expressions that may
lead to the loss of significant figures.

3. Acquire concepts on iterative methods for obtaining accurate approxi-
mations to roots of nonlinear equations. In particular, students should be
able to distinguish between globally convergent and locally convergent
methods as well as the order of convergence of a method.

4. Understand basic concepts of numerical linear algebra, such as: Gauss
elimination, with or without partial pivoting used to solve systems of
linear equations, and obtain the LU decomposition of a matrix and con-
sequently compute its determinant value and inverse matrix.

5. Learn the basic Lagrange interpolation theorem and acquire the ability
to use local polynomial interpolation through spline functions.

xi

© 2014 by Taylor & Francis Group, LLC

xii

6. Learn the basic formulae of numerical differentiation and integration
with the ability to obtain error estimates for each of the formulae.

7. Understand the concept of the order of a numerical method to solve an
ordinary differential equation and acquire basic knowledge in using one
step Runge-Kutta methods.

These objectives can be easily achieved in one semester by covering the core
material of this book: the first five chapters, in addition to sections 7.1, 7.3
and 7.4 of Chapter 7.

Additional Topics
In addition to the core material, Chapter 6 provides additional information
on numerical integration, specifically:
- One-dimensional adaptive numerical integration using Simpson’s rule.
- Two-dimensional numerical integration on rectangles and polygons.
- Monte Carlo methods in 1 and 2 dimensions.
Also, in Chapter 7 on ordinary differential equations, specific sections discuss:
- Existence of the solutions that features Picard’s iteration.
- Adaptive numerical integration based either on one Runge-Kutta method or
on a pair of embedded Runge-Kutta methods.
- Multi-step methods of Adams types and backward difference methods.

Algorithms and MATLAB Programs
Special attention is given to algorithms’ implementation through the use of
MATLAB’s syntax. As a matter of fact, each of the numerical methods explained
in any of the seven chapters is directly expressed either using a pseudo-code
or a detailed MATLAB program.

Exercises and Computer Projects
Each chapter ends with a large number of exercises. Answers to those with
odd numbers are provided at the end of the book.
Throughout the seven chapters, several computer projects are proposed. These
aim to test the students’ understanding of both the mathematics of numerical
methods and the art of computer programming.

Recommended sections for teaching a one semester course from the
book: 1.1 to 1.5; 2.1 to 2.5; 3.1 to 3.5; 4.1 to 4.6; 5.1 to 5.7; 7.1, 7.3 and 7.4.

Nabil Nassif and Dolly Fayyad

© 2014 by Taylor & Francis Group, LLC

About the Authors

Nabil Nassif received a Diplôme-Ingénieur from the Ecole Centrale de Paris
and earned a master’s degree in applied mathematics from Harvard Univer-
sity, followed by a PhD under the supervision of Professor Garrett Birkhoff.
Since his graduation, Dr. Nassif has been affiliated with the Mathematics
Department at the American University of Beirut, where he teaches and con-
ducts research in the areas of mathematical modeling, numerical analysis and
scientific computing. Professor Nassif has authored or co-authored about 50
publications in refereed journals and directed 12 PhD theses with an equal
number of master’s theses. During his career, Professor Nassif has also held
several regular and visiting teaching positions in France, Switzerland, U.S.A.
and Sweden.

Dolly Khoueiri Fayyad received her BSc and master’s degrees from the
American University of Beirut and her PhD degree from the University of
Reims in France under the supervision of Professor Nabil Nassif. After earning
her doctorate degree and before becoming a faculty member in the Mathe-
matics Department of the American University of Beirut, she taught at the
University of Louvain-la-Neuve in Belgium and then in the Sciences Faculty
of Lebanon National University. Simultaneously, Dr. Fayyad has conducted
research on the numerical solution of time-dependent partial differential equa-
tions and more particularly on semi-linear parabolic equations. She has also
supervised several master’s theses in her research areas.

xiii

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

List of Figures

1.1 A word of 4 bytes in IEEE single precision 18
1.2 A word of 8 bytes in IEEE double precision 21
1.3 Distribution of numbers in F(2, 4,−6, 7) 37
1.4 Distribution of numbers in F(2, 3,−3, 4) 38

2.1 Roots of e−x − sin(x), x > 0 52
2.2 Roots of p(x) = x4 − x3 − x− 1 53
2.3 Intersection with the x-axis of the tangent to (C) at (rn, f(rn)) 61
2.4 Finding a root of f(x) = sin(x)− e−x using Newton’s method 64
2.5 Intersection with the x-axis of the secant passing by the points

(rn, f(rn)) and (rn−1, f(rn−1)) on (C) 68

4.1 Runge counter example for non convergence of the interpolation
polynomial . 137

4.2 Natural quadratic spline approximation for f(x) = 3 cos(2x) . 143
4.3 Comparison of approximations between natural quadratic

spline and quadratic spline using z0 = y1−y0
x1−x0

for f(x) =
x cos(x)− 3 sin(3x) . 144

4.4 Comparison of approximations between natural quadratic
spline and quadratic spline using z0 = y1−y0

x1−x0
for f(x) =

3 sin(2x) . 145
4.5 Natural cubic spline approximation for the Runge function

f(x) = 1
1+x2 . 149

6.1 Graph of f(x) = x5(x− 5)2e−x 212
6.2 A partition of the rectangle MNPQ with m = n = 8 217
6.3 Nonconforming triangles in meshing a domain 222
6.4 Plot of a two dimensional domain with a polygonal boundary

∂Ω={(0,0),(0.4,0),(1,0.3),(1,0.7),(0.4,1),(0,1)} 222
6.5 A coarse mesh for the polygonal domain with boundary ∂Ω =

{(0, 0), (0.4, 0), (1, 0.3), (1, 0.7), (0.4, 1), (0, 1)} 223
6.6 A 26 triangles mesh for the polygonal domain with boundary

∂Ω = {(0, 0), (0.4, 0), (1, 0.3), (1, 0.7), (0.4, 1), (0, 1)} 223
6.7 A 100 triangles mesh for the polygonal domain with boundary

∂Ω = {(0, 0), (0.4, 0), (1, 0.3), (1, 0.7), (0.4, 1), (0, 1)} 223

6.8 Application of Monte Carlo to I =
∫ 2

−1
3(x− 1)2 + 2(x− 1)dx 229

xv

© 2014 by Taylor & Francis Group, LLC

xvi

6.9 Application of Monte Carlo method to I =
∫ 1

0
4
√

1− x2dx . . 229

7.1 Graph of the solution to y
′

= ayp, a > 0, y(0) = 1, a = 1 . . . 239
7.2 Graph of the solution to y

′
= ayp, a > 0, y(0) = 1, a = −1 . . 239

7.3 Graph of the solution to y
′
(t) = ay(t) − beat sin(bt), t >

0; y(0) = 1 . 261

© 2014 by Taylor & Francis Group, LLC

List of Tables

1.1 Table of conversion of octal symbols into base 2 5

1.2 Display of the elements in F(10, 3,−2, 3) 16

1.3 Absolute distances between successive numbers in the floating
point system F(10, 3,−2, 3) 17

1.4 Absolute distances between successive numbers in a general
floating point system F(β, p, emin, emax) 17

1.5 The IEEE single precision system 20

1.6 IEEE single precision positive elements 20

1.7 xmin, xmax, ε machine and p in IEEE single precision 20

1.8 Values in IEEE - double precision system 21

1.9 xmin, xmax, ε machine and p in IEEE double precision 21

1.10 Binary representations of hexadecimal symbols 22

1.11 Effects of round-off error propagation on the convergence of the
sequence In defined in (1.7) 29

2.1 Estimated number of iterations with respect to a requested pre-
cision in the bisection method 57

2.2 Bisection iterates for the first root of f(x) = e−x − sin(x) . . 57

2.3 Bisection iterates for one root of f(x) = x4 − x3 − x− 1 . . . 58

2.4 Convergence of the intervals (an, bn) to the positive root of
f(x) = ln(1 + x)− 1

1+x . 59

2.5 Estimate of the number of iterations as a function of the pre-
cision in Newton’s method . 63

2.6 A case of a diverging Newton’s iteration 64

2.7 A case of a converging Newton’s iteration 65

2.8 Application of the secant method for the first root of f(x) =
sin(x)− e−x . 71

2.9 Comparing Newton’s and secant methods for precisions p =
10, 24, 53 . 72

3.1 Computer memory requirements for matrix storage 85

4.1 Neville’s array constructing Lagrange interpolation polynomi-
als . 126

4.2 Divided difference table for n = 5 130

xvii

© 2014 by Taylor & Francis Group, LLC

xviii

4.3 A divided difference table for f(x) = ln(x) for unequally sized
data x = {1.0, 1.5, 2.0, 3.0, 3.5, 4.0} 131

4.4 Errors in polynomial interpolation for f(x) = ln(1.2) 131
4.5 Errors in polynomial interpolation for f(x) = ln(2.5) 132
4.6 A difference table for equally spaced x data 135
4.7 An example of a difference table for equally spaced x data . . 136

5.1 Data for Bessel function J0(x), x = 0.0 0.25, ..., 2.00 171
5.2 Approximations for J ′0(0) = 0, for h = 0.25, 0.50, 0.75, 1.00 . . 171
5.3 Approximations to J

′

0(0.25) = −0.12402598 using central, back-
ward and forward differences 171

5.4 Approximations for J ′0(1) = −0.44005059, using central differ-
ence formula . 172

5.5 Description of a Richardson’s process for Q = Q(h) + c1h
α +

O(hβ) + ... 175
5.6 Refined approximations to J ′0(0) using Richardson’s extrapola-

tion . 178
5.7 A copy of data for the function J0(x), x = 0.00, 0.25, ..., 2.00 186
5.8 A template to apply Romberg integration formulae 194

6.1 Minimum number of intervals for uniform partitions using

Simpson’s rule to compute I =
∫ 40

0
100xe−xdx up to a rela-

tive tolerance εtol . 215
6.2 Number of intervals as a function of the user’s tolerance εtol in

adaptive Simpson’s rule . 215
6.3 Results of use of double Simpson’s rule to approximate∫ 2.5

0

∫ 1.4

0
x4y4 dy dx = 21.00875 221

6.4 Application of Monte Carlo method to I =
∫ 1

0
4
√

1− x2dx . . 229
6.5 Results of Monte Carlo mean-value simulations to I =

4
∫ 1

0

√
1− x2dx . 232

6.6 Results for Monte Carlo approximations to V =
∫ 5/4

0

∫ 5/4

0
(4−

x2 − y2) dydx . 232

7.1 Results of Euler’s method for y′(t) = t3y, t ∈ [0, 2], y(0) = 1 . 249
7.2 Results of Heun’s method for y′(t) = t3y, t ∈ [0, 2], y(0) = 1 . 253
7.3 Coefficients of an s-stage Runge-Kutta method 254
7.4 Coefficients of a general two-stage Runge-Kutta method . . . 256
7.5 Coefficients of a general three-stage Runge-Kutta method . . 256
7.6 Coefficients of a three-stage Runge-Kutta Heun method . . . 257
7.7 Coefficients of the classical fourth-order Runge-Kutta method 258
7.8 Coefficients of the “ 3

8” fourth-order Runge-Kutta method . . 258

7.9 Results of applying Algorithm 7.3 to solve y
′
(t) = a ∗ y(t) −

beat sin(bt), t > 0; y(0) = 1 261
7.10 A second-order RK method embedded in third-order RK Heun

method . 262

© 2014 by Taylor & Francis Group, LLC

xix

7.11 Coefficients of the fourth-order RK used in MATLAB ode45

solver . 263
7.12 Coefficients of the fifth-order RK used in MATLAB ode45 solver 263

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

Chapter 1

Computer Number Systems and
Floating Point Arithmetic

1.1 Introduction . 1
1.2 Conversion from Base 10 to Base 2 . 3

1.2.1 Conversion of the Integral Part . 3
1.2.2 Conversion of the Fractional Part . 7

1.3 Conversion from Base 2 to Base 10 . 9
1.3.1 Polynomial Evaluation . 9
1.3.2 Conversion of the Integral Part . 10
1.3.3 Conversion of the Fractional Part . 11

1.4 Normalized Floating Point Systems . 12
1.4.1 Introductory Concepts . 12
1.4.2 IEEE Floating Point Systems . 18
1.4.3 Denormalized Numbers in MATLAB . 23
1.4.4 Rounding Errors in Floating Point Representation of Numbers . . 24

1.5 Floating Point Operations . 27
1.5.1 Algebraic Properties in Floating Point Operations 29
1.5.2 The Problem of Absorption . 30
1.5.3 The Problem of Cancellation or Loss of Precision 32

1.6 Computing in a Floating Point System . 35
1.6.1 Cardinality and Distribution of Special Floating Point System . . 35
1.6.2 A MATLAB Simulation of a Floating Point System 36
1.6.3 Tips for Floating Point Computation . 37

1.7 Exercises . 38
1.8 Computer Projects . 44

1.1 Introduction

The main objective of this chapter is to introduce the students to modes
of storage of users’ numbers in a computer memory and as well providing
the readers with basic concepts of computer arithmetic, referred to also
as Floating Point Arithmetic. Although the principles covered are general
and can apply to any finite precision arithmetic system, we apply those princi-
ples only to Single and Double Precision IEEE (Institute of Electrical and
Electronics Engineers) systems. For additional detailed references, we refer to
[8], [14], [19] and [23].
In this view, we start by describing computer number representation in the
binary system that uses 2 as the base. Since the usual decimal system uses
base 10, we discuss therefore methods of conversion from one base to another.

1

© 2014 by Taylor & Francis Group, LLC

2 Introduction to Numerical Analysis and Scientific Computing

The octal and hexadecimal systems (respectively, base 8 and base 16 systems)
are also introduced as they are often needed as intermediate stages between
the binary and decimal systems. Furthermore, the subsequent hexadecimal
notation is used to represent internal contents of stored numbers.
Since all machines have limited resources, not all real numbers can be repre-
sented in the computer memory; only a finite subset F of R is effectively dealt
with. More precisely, F is a proper subset of the rationals, with F ⊂ Q ⊂ R.
We shall therefore define first in general, normalized floating point systems F
representing numbers in base β ∈ N , β ≥ 2 with a fixed precision p, and ana-
lyze particularly the standard IEEE single precision Fs and double precision
Fd binary systems.
Moreover, the arithmetic performed in a computer is not exact; F is charac-
terized by properties that are different from those in R. We present therefore
floating point arithmetic operations in the last sections of this chapter.
Note that IEEE stands for “Institute for Electrical and Electronics Engineers.”
The IEEE standard for floating point arithmetic (IEEE 754) is the most widely
used standard for floating point operation and is followed by many hardware
and software implementations; most computer languages allow or require that
some or all arithmetic be carried out using IEEE formats and operations.
For any base β ∈ N , β ≥ 2, we associate the set of symbols Sβ , which consists
of β distinct symbols. To illustrate, we have the following examples:

S10 = {0, 1, .., 9},

S2 = {0, 1},
S16 = {0, 1, .., 9, A,B,C,D,E, F}.

The general representation of x ∈ R in base β is given by:

x = ±(aNβ
N+...+a1β+a0+a′1β

−1+...+a′pβ
−p) = ±(aNaN−1...a1a0·a′1...a′p)β

(1.1)
where 0 ≤ N < ∞, 1 ≤ p ≤ ∞ and ai, a

′
i ∈ Sβ , with aN 6= 0 being the most

significant digit in this number representation.
The number x is thus characterized by its sign ±, its integral part E(x) =∑N
i=0 aiβ

i and its fractional part F (x) =
∑p
i=1 a

′
iβ
−i, leading to the following

general expression of x:
x = ±(E(x) + F (x))

or also equivalently: x = ±(E(x).F (x))
Note that in case p =∞, the fractional part of x is said to be infinite.

Example 1.1 The octal representation of 0.36207 is:

(0.36207)8 = 3× 8−1 + 6× 8−2 + 2× 8−3 + 7× 8−5

The decimal representation of 57.33333... is :

(57.33333...)10 = (57.3)10 = 5× 10 + 7 + 3× 10−1 + 3× 10−2 + ...

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 3

The hexadecimal representation of 4.A02C is :

(4.A02C)16 = 4 +A× 16−1 + 2× 16−2 + C × 16−3

1.2 Conversion from Base 10 to Base 2

Assume that a number x ∈ R is given in base 10, whereby:

x = ±(dN10N+...+d110+d0+d′110−1+..+d′p10−p) = ±(dNdN−1...d1d0.d
′
1...d

′
p)10,

where di, d
′
i ∈ S10 ∀i, dN 6= 0, and p ≤ ∞. We seek its conversion to base 2,

in a way that:

x = ±(bM2M + ...+ b12 + b0 + b′12−1 + ...+ b′l2
−l) = ±(bMbM−1...b1b0.b

′
1...b

′
l)2,

where bi, b
′
i ∈ S2 ∀i, bM 6= 0, l ≤ ∞.

We convert successively the integral and fractional parts of x.

1.2.1 Conversion of the Integral Part

Starting with the integral part of x, E(x) and writing:

E(x) = dN10N + ...+ d110 + d0 = bM2M + ...+ b12 + b0, (1.2)

one has to find the sequence {bi|i = 0, ...,M} in S2, given the sequence
{di|i = 0, ..., N} in S10. Both sequences are obviously finite. The conversion is
done using the successive division algorithm of positive integers based on the
Euclidean division theorem stated as follows:

Theorem 1.1 Let D and d be two positive integers. There exist 2 non-
negative integers q (the quotient) and r (the remainder), such that r ∈
{0, 1, 2, ..., d− 1}, verifying:

D = d× q + r.

For notation purpose, we write q = D div d and r = Dmod d.

Remark 1.1 When D < 0 and d > 0, one has:

D = q × d+ r, with q = bD
d
c < 0.

where brc : R→ Z designates the “floor function” of the real number r.

© 2014 by Taylor & Francis Group, LLC

4 Introduction to Numerical Analysis and Scientific Computing

On the base of (1.2), if E(x) = D, then one seeks:

D = E(x) = (bM2M−1 + ...+ b1)× 2 + b0

where
(bM2M−1 + ...+ b1) = Ddiv 2 and b0 = Dmod 2.

Thus if D is divided once by 2, the remainder in this division is b0. We can
repeat this argument taking then D = bM2M−1 + ... + b1 to find b1, then
following a similar pattern, compute successively all remainders b2, ..., bM .
The process is stopped as soon as the quotient of the division is identical to
zero.
The corresponding MATLAB function can then be easily implemented as follows:

Algorithm 1.1 Integer Conversion from Base 10 to 2

% Input: D an integer in decimal representation

% Output: string s of binary symbols (0’s and 1’s)

% representing D in base 2

% All arithmetic is based on rules of the decimal system

function s = ConvertInt10to2(D)

s=[];

while D>0

%Divide D by 2, calculate the quotient q and the remainder r,

% then add r in s from right to left

q=fix(D/2);

r= D - 2*q ;

s=[r s];

D=q;

end

As an application, consider the following example.

Example 1.2 Convert the decimal integer D = 78 to base 2.

Using the above algorithm, we have successively:
78 = 39× 2 + 0
39 = 19× 2 + 1
19 = 9× 2 + 1
9 = 4× 2 + 1
4 = 2× 2 + 0
2 = 1× 2 + 0
1 = 0× 2 + 1.
Hence, one concludes that (78)10 = (1001110)2.

We can now introduce base 8 in order to shorten this procedure of conver-
sion. The octal system is particularly useful when converting from the decimal
system to the binary system, and vice versa. Indeed, if

E(x) = bM2M + ...+ b323 + b222 + b12 + b0 , with bi ∈ {0, 1},

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 5

Octal symbol Group of 3 bits
oi = b3i+2b3i+1b3i

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

TABLE 1.1: Table of conversion of octal symbols into base 2

we can group the bits 3 by 3 from right to left (supplying additional zeros if
necessary), then factorize successively the positive powers of 8, i.e., 80, 81, 82, ...
to have:

E(x) = ...+ (b525 + b424 + b323) + (b222 + b12 + b0)

then equivalently:

E(x) = ...+ (b822 + b72 + b6)82 + (b522 + b42 + b3)81 + (b222 + b12 + b0)80

=
l∑
i=0

(b3i+222 + b3i+12 + b3i)8
i

Letting oi = b3i+222+b3i+12+b3i , one writes then the integral part as follows:

E(x) =
l∑
i=0

oi8
i

Note that for all values of i, 0 ≤ oi ≤ 7, implying that oi is an octal symbol.
The conversion is set up according to Table 1.1. Thus, to convert from base 2
to base 8, groups of 3 binary digits can be translated directly to octal symbols
according to the above table. Conversion of an octal number to binary can be
done in a similar way but in reverse order; i.e., just replace each octal digit
with the corresponding 3 binary digits. To convert an integer from base 10 to
base 2, we can therefore start by converting it to base 8:

(E(x))10 → (E(x))8 → (E(x))2

The algorithm implementing this conversion process is the following:

© 2014 by Taylor & Francis Group, LLC

6 Introduction to Numerical Analysis and Scientific Computing

Algorithm 1.2 Integer Conversion from Base 10 to Base 8

% Input D=E(x) integer in decimal representation

% Output : string s of octal symbols

% All arithmetic is based on rules of the decimal system

function s=ConvertInt10to8(D)

s=[] ;

While D>0

r=rem(D, 8) ;

D=fix(D/8) ;

s=[r s] ;

end

In the preceding example, using this algorithm we have successively:
78 = 9× 8 + 6
9 = 1× 8 + 1
1 = 0× 8 + 1.
Hence, (78)10 = (116)8 through 3 successive divisions by 8.
Referring to Table 1.1 that converts octal symbols to binary, we obviously
deduce that:

(78)10 = (116)8 = (001 001 110)2 = (1001110)2

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 7

1.2.2 Conversion of the Fractional Part

To convert the fractional part F (x) of the decimal x, we introduce the
successive multiplication algorithm. Its principle runs as follows: given
the sequence {d′i} ∈ S10, we seek the sequence {b′i} ∈ S2 with:

F (x) = d′110−1 + ..+ d′p10−p = b′12−1 + ...+ b′l2
−l (1.3)

Let f = F (x). Note then the following identity:

2f = b′1 + b′22−1...+ b′l2
1−l = b′1 · b′2 · ... · b′l−1.

Obviously through one multiplication of f by 2, the integral and fractional
parts of 2f are respectively:

E(2f) = b′1 and F (2f) = b′22−1...+ b′l2
1−l

We can therefore repeat the same procedure, of multiplication by 2, to find
successively b′2, then b′3, ... ,b

′

l. The corresponding algorithm is the following:

Algorithm 1.3 Fraction Conversion from Base 10 to Base 2

% Input: F, fractional part of a decimal number 0<F<1

% k, maximum number of binary bits required for binary fractional part

% Output: string s (up to k bits) representing F in base 2

function s=ConvertFrac10to2(F,k)

s=[] ;

i=1;

while F>0 & i<=k

G=2*F;

b=fix(G);

F=G-b;

s = [s b] ;

i=i+1;

end

Note that if f has an infinite representation in base 10, its representation
in base 2 will also be infinite. However, we could have situations where f
is finitely represented in base 10 and infinitely represented in base 2. To
illustrate, consider the following examples.

Example 1.3 Convert (0.25)10 to base 2.

We apply the above algorithm to get successively:
2× 0.25 = 0 + 0.5
2× 0.5 = 1 + 0.0
Thus (0.25)10 = (0.01)2.

Example 1.4 Convert (0.1)10 to base 2.

© 2014 by Taylor & Francis Group, LLC

8 Introduction to Numerical Analysis and Scientific Computing

Applying the same non-terminating procedure, we have:
2× 0.1 = 0 + 0.2
2× 0.2 = 0 + 0.4
2× 0.4 = 0 + 0.8
2× 0.8 = 1 + 0.6
2× 0.6 = 1 + 0.2
2× 0.2 = 0 + 0.4
2× 0.4 = 0 + 0.8
2× 0.8 = 1 + 0.6
2× 0.6 = 1 + 0.2
...
Thus (0.1)10 = (0.0001100110011...)2 = (0.00011)2.
We end up with an example where both representations are infinite.

Example 1.5 Convert 1
3 to base 2.

Let us apply the successive multiplication algorithm to this fraction:
2× 1

3 = 0 + 2
3

2× 2
3 = 1 + 1

3
...............
Hence: 1

3 = (0.3)10 = (0.0101...)2 = (0.01)2

Of course, base 8 can also be used as an intermediate stage:

(F (x))10 → (F (x))8 → (F (x))2

By grouping the bits 3 by 3 from left to right, supplying additional zeros if
necessary, then factorizing successively negative powers of 8: 8−1, 8−2, ... one
establishes through these steps the following identities:

F (x) = (b12−1 + b22−2 + b32−3) + (b42−4 + b52−5 + b62−6) + ...

= (b14 + b22 + b3)8−1 + (b44 + b52 + b6)8−2 + ... = o18−1 + o28−2 + ...

We can then have a new version of the successive multiplication by 8 algorithm
converting a fractional decimal to octal, followed by a final conversion to a
binary fractional using the table of conversion.
To illustrate, consider the following examples.

Example 1.6 Convert (0.75)10 to base 2, using base 8 as intermediate.

A straightforward application of the procedure above yields: 8×0.75 = 6+0.00.
Hence:

(0.75)10 = (0.6)8 = (0.110)2 = (0.11)2

Example 1.7 Convert x = (0.12)10 to base 2, using base 8 as intermediate.
Do not exceed 21 bits for the representation of x in base 2.

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 9

Getting 21 bits in base 2 means reaching 7 digits in base 8. Therefore one only
needs to apply 7 successive multiplications by 8. This yields:
8× 0.12 = 0 + 0.96
8× 0.96 = 7 + 0.68
8× 0.68 = 5 + 0.44
8× 0.44 = 3 + 0.52
8× 0.52 = 4 + 0.16
8× 0.16 = 1 + 0.28
8× 0.28 = 2 + 0.24
...
Hence (0.12)10 = (0.0753412...)8 = (0.000 111 101 011 100 001 010 ...)2.

1.3 Conversion from Base 2 to Base 10

We consider in this section inverse procedures that convert numbers from
base 2 (or 8) to base 10. For a real number x, this is performed as previously
on the integral part E(x) first, then on the fractional part F (x). Of course,
the successive division and multiplication algorithms can be applied. However,
this would mean dividing or multiplying successively by 10 and performing the
arithmetic operations in base 2 (or 8). Instead, we follow up a straightforward
polynomial evaluation process, with the arithmetic being performed in base
10. We start by discussing this last issue.

1.3.1 Polynomial Evaluation

Consider the polynomial pn(y) of degree n, with real coefficients {ai|i =
0, 1..., n} and an 6= 0:

pn(y) = a0 + a1y + ...+ an−1y
n−1 + any

n ; y ∈ R

A first way to evaluate pn(y) is by using a straightforward sum of products,
as indicated in the following algorithm:

Algorithm 1.4 Direct Polynomial Evaluation

function p=EvaluatePolyStraight(a,y)

% Input a=[a(1),...,a(n+1)] and y

% Output Value of p(y)=a(n+1)*y^n+a(n)*y^{n-1}+...+a(2)*y+a(1)$

n=length(a)-1;

t=y;p=a(1);

for i=2:n+1

© 2014 by Taylor & Francis Group, LLC

10 Introduction to Numerical Analysis and Scientific Computing

p=p+a(i)*t;

t=t*y;

end

This algorithm requires n additions and 2n multiplications.
A more efficient algorithm, called Horner’s algorithm, uses nested eval-
uation. One starts by writing the given polynomial in nested form as shown
below:

pn(y) = any
n+an−1y

n−1+...+a1y+a0 = (any+an−1)yn−1+an−2y
n−2+...+a1y+a0

= ((any+an−1)y+an−2)yn−2+...+a1y+a0 = (((any+an−1)y+an−2)y+an−3)yn−3...+a1y+a0

= (...(((any + an−1)y + an−2)y + an−3)y + ...+ a1)y + a0

This method can be implemented as follows:

Algorithm 1.5 Nested Polynomial Evaluation

% Input a=[a(1),...,a(n+1)] and y

% Output Value of p(y)=a(n+1)*y^n+a(n)*y^{n-1}+...+a(2)*y+a(1)$

function p=EvaluatePolyNested(a,y)

n=length(a)-1;

p=a(n+1);

for i=n:-1:1

p=p*y+a(i);

end

Such procedure requires n multiplications and n additions, i.e., a total of 2n
operations, that is 2/3 of the number of arithmetic operations in the pre-
vious algorithm. Thus, to minimize the number of arithmetic calculations,
polynomials should always be expressed in nested form before performing an
evaluation.

Example 1.8 Write f(x) = 5x3 − 6x2 + 3x+ 1 in nested form.

f(x) = 5x3 − 6x2 + 3x+ 1 = ((5x− 6)x+ 3)x+ 1

1.3.2 Conversion of the Integral Part

Rewriting identity (1.2) as:

E(x) = bM2M + ...+ b12 + b0 = dN10N + ...+ d110 + d0,

one seeks now to find the sequence {di} in S10 given the sequence {bi} in S2.
Indeed, note that E(x) = pM (2), where pM is the polynomial of degree M
given by:

pM (y) = bMy
M + ...+ b1y + b0.

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 11

Hence finding E(x) in base 10 reduces to the evaluation, using decimal arith-
metic of the polynomial pM (y), for y = 2. In case one wants to use the octals as
intermediates, the bits are first grouped 3 by 3 to write E(x) as a polynomial
in powers of 8, based on the table of conversion. That is:

E(x) = oL8L + ...+ o18 + o0 = qL(8),

where qL is a polynomial of degree L given by qL(y) = oLy
L + ...+ o1y + o0.

Using decimal arithmetic, one computes then qL(y) for y = 8.

Example 1.9 Convert the binary integer D = (01110101110011)2 to base 10,
using base 8 as intermediate.

We first convert D to base 8 using the table of conversion:

D = (01110101110011)2 = (001 110 101 110 011)2 = (16563)8 = 1×84+6×83+5×82+6×8+3.

Thus, using nested polynomial evaluation, one gets:

D = (((8 + 6)8 + 5)8 + 6)8 + 3 = (7539)10.

1.3.3 Conversion of the Fractional Part

Given the sequence {b′i} ∈ S2, we seek now the sequence {d′i} ∈ S10, such
that:

F (x) = f = b′12−1 + ...+ b′l2
−l = d′110−1 + ...+ d′p10−p

Using decimal arithmetic, the evaluation of f is based on the following steps:

f = b′12−1 + ...+ b′l2
−l = 2−l(b′12l−1 + ...+ b′l)

that is, using nested polynomial evaluation:

f = 2−lpl−1(2),

where obviously:
pl−1(y) = b′1y

l−1 + b′2y
l−2...+ b′l.

Clearly then, to use base 8 as an intermediate, through grouping the bits 3 by
3, then referring to the table of conversion, one gets a polynomial expression
in negative powers of 8, specifically:

f = o′18−1 + ...+ o′k−18−k+1 + o′k8−k

Equivalently,

f = 8−k(o′18k−1 + ...+ o′k−18 + o′k) = 8−kqk−1(8),

with qk−1(y) = o′1y
k−1 + ...+ o′k−1y + o′k.

To illustrate consider the following example.

© 2014 by Taylor & Francis Group, LLC

12 Introduction to Numerical Analysis and Scientific Computing

Example 1.10 Convert the fractional octal f = (0.00111000111)2 to base 10.
Use base 8 as intermediate.

We start by converting f to base 8, yielding:

f = (0.1616)8 = 1×8−1+6×8−2+1×8−3+6×8−4 = 8−4(1×83+6×82+1×8+6)

Through nested evaluation,

83 + 6× 82 + 8 + 6 = ((8 + 6)8 + 1)8 + 6 = 910.

Thus:

f = 8−4 × 910 =
910

4096
= 0.2221679

1.4 Normalized Floating Point Systems

1.4.1 Introductory Concepts

Recall that a standard way to represent a real number in decimal form is
with a sign (+ or −), an integral part, a fractional part and a decimal point
in between, for example: +32.875 or −0.0082.
Another standard computer notation called the normalized floating point
representation, is obtained by shifting the decimal point and supplying ap-
propriate powers of 10. Thus the preceding numbers have an alternate repre-
sentation respectively as +3.2875× 101, or −8.2× 10−3.
In general, a non-zero real number x in the base β is written in the standard
normalized floating point form:

x = ± m × βe

where m is called the mantissa, with 1 ≤ m < β and e the exponent, being
a positive or negative integer. These parameters are obtained from (1.1) by
writing:

x = ±(aNβ
N+aN−1β

N−1+...+a′pβ
−p) = ±(aN+aN−1β

−1+...+a′pβ
−(p+N))×βN

where aN 6= 0, thus leading to

m = aN + aN−1β
−1 + aN−2β

−2 + ...+ a′pβ
−(p+N), and e = N

Remark 1.2 If the number x has a non-terminating fractional part, in some
cases the mantissa m can reach the value β.

For example, consider the following decimal number x:

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 13

x = 0.9999999... = 9× 10−1 + 9× 10−2 + ...

The normalized floating point representation of x is:

x = (9 + 9× 10−1 + 9× 10−2 + ...)× 10−1 = 9.99999999...× 10−1

Thus, the mantissa is infinite with

m = 9.9̄ = 9(1 + 1
10 + 1

102 + 1
103 + ...) = 9 1

1−1/10 = 10 = β

Example 1.11 Base 10, 2 and 8 representations of 1
3 in normalized floating

point notations.

1. In the normalized floating point notation, 1
3 in base 10 is expressed as

follows:
1

3
= (0.3)10 = 3.3× 10−1.

Thus, in such system, the mantissa m = 3.3 and the exponent e = −1.

2. However in base 2 (Example 1.5), it becomes:

1

3
= (0.01)2 = (0.0101010101...)2 = 1.01010101...× 2−2 = 1.01× 2−2,

i.e., the mantissa is m = 1.01 and the exponent e = −2.

3. Finally, to convert 1
3 to base 8:

1

3
= (0.010101010101...)2 = (0.2525...)8 = 2.52× 8−1.

where m = 2.52 and e = −1.

Example 1.12 Write the binary number x = (11001.0111)2 in the normal-
ized floating point notation.

x = (11001.0111)2 = 1.10010111× 24

Note that every computer system has a finite total capacity and a finite word
length. Numbers used in calculations within a computer system must con-
form to the format imposed in that system; only real numbers with a finite
number of digits can be represented, leading then to a strictly limited degree
of precision. Real numbers representable in a computer are called machine
numbers, and are written in a standard format.
A floating point system F consists of machine numbers and is defined as
follows:

© 2014 by Taylor & Francis Group, LLC

14 Introduction to Numerical Analysis and Scientific Computing

Definition 1.1 A normalized floating point system F = F (β, p, emin, emax)
is the set of all real numbers written in normalized floating point form
x = ± m× βe where m is the mantissa of x and e, the exponent, such that:

1. If x 6= 0, then m = m0+m1β
−1+...+mp−1β

−(p−1); with mi ∈ Sβ , m0 6=
0, and emin ≤ e ≤ emax

2. If x = 0, then m = 0, while e could take any value or be selected according
to other criteria.

The main parameters of a floating point system F = F (β, p, emin, emax) are:

1. The base β

2. The number of significant digits p, called the precision of the sys-
tem which is a finite positive integer that could be given a specific
value (IEEE systems) or be defined by the user (MATHEMATICA or
MAPLE)

3. The range of the exponent [emin, emax], with emin < 0 and emax =
|emin|+ 1

4. A convention for representing zero

Note that since there is a complete symmetry with respect to zero, between
the positive and negative elements of F , we will analyze and prove in what
follows properties of the positive elements only.

Theorem 1.2 Let x ∈ F = F (β, p, emin, emax), with x = + m×βe and x 6= 0.

1. 1 ≤ m < β,

2. xmin ≤ x ≤ xmax, where
xmin = βemin

and

xmax = (β − 1)(1 + β−1 + ...+ β−p+1)βemax < β × βemax .

3. If x = +m × βe ∈ F with xmin ≤ x < xmax, then the successor of x is
given by

succ(x) = x+ β1−pβe

leading to:
succ(x)− x

x
≤ β−p+1.

Proof.

1. The first part of the theorem is obtained straightforwardly from the
definition.

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 15

2. It is enough to note that the minimum value of m is reached when
a0 = 1 and ai = 0, for 1 ≤ i ≤ p − 1, i.e., m = 1, while the maximum
is obtained when ai = β − 1 for all 0 ≤ i ≤ p − 1. In this case m =
(β − 1)(1 + 1/β + ...+ (1/β)p−1) = β(1− (1/β)p) < β.

3. As for the third part, if x = (m0 +m1β
−1 + ...+mp−1β

−(p−1))βe, then
the successor of x is obtained by adding 1 unit to the least significant
digit of its mantissa, leading to the following identity:

succ(x) = x+ β−p+1βe = (m+ β−p+1)βe (1.4)

Thus succ(x)− x = β−p+1βe and

succ(x)− x
x

=
β−p+1βe

m× βe
=
β−p+1

m
≤ β−p+1 (1.5)

since m ≥ 1.

Definition 1.2 In a floating point system F (β, p, emin, emax), the system ep-
silon or epsilon machine is defined by the parameter εM :

εM = β−p+1.

Clearly εM is a measure of the precision of the system, since according to
(1.5) it is a maximum bound on the relative distance between two consecutive
numbers in F (β, p, emin, emax). Furthermore, note that equation (1.4) can be
written as:

succ(x) = (m+ β−p+1)βe

from which one concludes that εM also represents the difference between the
mantissas of two successive positive numbers in F .

As a direct application, we consider the following example:

Example 1.13 Display the elements of the floating point system
F = F(10, 3,−2,+3).

For non-zero numbers, we shall display only the positive elements; the negative
ones being deduced by symmetry. This is done in Table 1.2.
In this decimal floating point system, the following parameters in F are easily

computed:

• xmin = 1.00× 10−2

• xmax = 9.99× 103

• εM = 10−2 = 0.01.

• To represent zero, one might consider ±0. For that purpose, we adopt
a convention whereby ±0 is represented by a 0 mantissa, regardless of
the exponent. Therefore zero ∈ F (10, 3,−1, 2), and it is represented by
± 0.00× 10e for any value of e.

© 2014 by Taylor & Francis Group, LLC

16 Introduction to Numerical Analysis and Scientific Computing

Positive numbers
in F (10, 3,−2, 3)

1.00× 10−2

1.01× 10−2

....
9.98× 10−2

9.99× 10−2

1.00× 10−1

1.01× 10−1

....
9.98× 101

9.99× 10−1

1.00× 100

1.01× 100

....
9.98× 100

9.99× 100

1.00× 101

1.01× 101

....
9.98× 101

9.99× 101

1.00× 102

1.01× 102

....
9.98× 102

9.99× 102

1.00× 103

1.01× 103

....
9.98× 103

9.99× 103

TABLE 1.2: Display of the elements in F(10, 3,−2, 3)

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 17

Interval Neighboring numbers distance

[10−2, 10−1) εM × 10−2 = 10−4

[10−1, 1) εM × 10−1 = 10−3

[1, 101) εM × 100 = 10−2 = εM
[101, 102) εM × 101 = 10−1

[102, 103) εM × 102 = 1
[103, 104) εM × 103 = 10

TABLE 1.3: Absolute distances between successive numbers in the floating
point system F(10, 3,−2, 3)

Interval Neighboring numbers distance
........

[1/β3, 1/β2) β−p−2

[1/β2, 1/β) β−p−1

[1/β, β) β−p

[1, β) β−p+1 = εM
[β, β2) β−p+2

[β2, β3) β−p+3

........

TABLE 1.4: Absolute distances between successive numbers in a general
floating point system F(β, p, emin, emax)

• The total number of elements in F is

card(F) = 2× [(9× 102)× 6] + 2 = 10802

Moreover, the absolute distances between 2 successive or neighboring floating
point numbers in F, increase and are computed as in Table 1.3.
These results can be generalized and extended to any floating point system
F = F (β, p, emin, emax). Absolute distances decrease towards zero, on intervals
that are subset of (0, β) and in contrast these distances increase on intervals
in [β, xmax] towards xmax, with

max
x∈(−β,+β)∩F

|x− succ(x)| ≤ εM ,

We note also that the ε-machine εM = β1−p being the smallest upper bound of
relative distances in F coincides with the smallest absolute distance between
successive points only on the interval [1, β). The following table summarizes
such fact. Thus, when computing in F, criteria for “numerical convergence”
should be preferably established in terms of relative errors and not absolute
ones.

© 2014 by Taylor & Francis Group, LLC

18 Introduction to Numerical Analysis and Scientific Computing

4 bytes, a total of 32 bits
t sign biased exponent c f part of mantissa m
1 bit 8 bits 23 bits

FIGURE 1.1: A word of 4 bytes in IEEE single precision

1.4.2 IEEE Floating Point Systems

A computer operating in binary normalized floating point mode represents
numbers as described earlier except for the limitation imposed by the finite
word length. In this section, we shall describe the internal representation
and storage of numbers for IEEE floating point systems. Addressable words
of 4 bytes (32 bits or digits) and 8 bytes (64 bits) are used respectively in
single and double precision floating point systems referred to as Fs and Fd. In
what follows, we analyze some properties of these systems successively.

1. IEEE single precision floating point system
By single-precision IEEE floating point numbers, we mean all ac-
ceptable numbers belonging to the normalized floating point system
Fs=F(2, 24,−126,+127), where a non-zero number x stored in a word
of 4 bytes is organized as follows:

x = ±(1.f)2 × 2e = (−1)t(1.f)2 × 2c−127

according to Figure 1.1. Note the following:
(i) In Fs, if x 6= 0, the first bit in the mantissa is always 1, so that this bit
does not have to be stored. The stored mantissa consists of the rightmost
23 bits and contains the fractional part f with an understood binary
point. So the mantissa actually corresponds to 24 binary digits since
there is a hidden bit. Moreover, the mantissa of each non-zero positive
number is restricted by the mantissas of xmin and xmax, satisfying the
following inequality:

1.000...000 ≤ (1.f)2 ≤ 1.111....11

(ii) In order to store positive numbers only, the biased exponent c
is introduced, with e = c − 127. The values of c in Fs are bounded as
follows:

(0)10 = (00 000 000)2 < c < (11 111 111)2 = (255)10

The values c = 0 and c = 255 are reserved for special machine numbers
obtained in calculations, that are not elements of FS .
Thus, the value c = 0 is reserved for ±0 and the subnormal or denor-
malized numbers (in case of underflow in the computations), while the
value c = 255 includes ±∞ (in case of overflow in the computations) and

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 19

“undefined” NaN numbers as for example: 0/0,∞/∞, xd/xd,∞−∞,
The sign of NaN has no meaning, but it may be predictable in some cir-
cumstances; most applications (as MATLAB for example) ignore its sign ,
and place such elements by “sort functions” at the high end of positive
numbers. Note also that once generated, a NaN propagates through all
subsequent computations.
The value of the biased exponent c in Fs, ∀x 6= 0, is thus strictly re-
stricted by the inequality:

(1)10 = (00 000 001)2 ≤ c ≤ (11 111 110)2 = (254)10

or equivalently
−126 ≤ e ≤ 127.

We may then extend Definition 1.1 as follows to the IEEE single preci-
sion system.

Definition 1.3 Let x be a machine number in Fs(2, 24,−126,+127),
where the biased exponent c = e+ 127, then:

a- If 1 ≤ c ≤ 254, i.e., −126 ≤ e ≤ 127: x = (−1)t(1.f)× 2c−127.
Moreover, if t = 1 then x < 0 and if t = 0 then x > 0.
b- The case c = 0 is reserved for special number representations: 0 and
denormalized numbers:

• The case c = f = 0 is reserved for the zeros, where |x| = 0. By
convention we write x = ±0.

• The case c = 0, and f 6= 0, is used to fill the gap between 0 and xmin
(or −xmin and 0), with denormalized numbers. By convention,
we write x = xd = ±0.f × 2−126.

c- c = 255 is reserved for representations of ±∞ and NaN numbers
defined as follows:

• The case c = 255 and f = 0 represents x = ±∞.

• The case c = 255 and f 6= 0 represents “Not a Number” written as
x = NaN.

Table 1.5 provides all the elements of Fs while Table 1.6 gives some of
its non-negative elements.
Table 1.7 gives the basic parameters of Fs. Note that the machine epsilon
εM = (2−23)2 = (21−24)2 < (2× 10−7)10 < (101−7)10. This implies that
in a simple computation in base 10, approximately 7 significant decimal
digits of accuracy may be obtained in single precision.
When more precision is needed, then IEEE double precision can be
used. In that case each double precision floating number is stored in 2
computer memory words (8 bytes ≡ 64 bits).

© 2014 by Taylor & Francis Group, LLC

20 Introduction to Numerical Analysis and Scientific Computing

c f e = c− 127 m Number being represented
0 0 Not Applicable 0.0 ±0
0 6= 0 Not Applicable 0.f (−1)t(0.f)2−126

0 < c < 255 any −127 < e < 128 1.f (−1)t(1.f)2c−127

255 0 Not Applicable 1.0 ±∞
255 6= 0 Not Applicable 1.f NaN (Not a Number)

TABLE 1.5: The IEEE single precision system

c Number Representation
in F (2, 24,−126, 127)

c=0 0 0.00...00
c=1 xmin 1.00..00× 2−126

....
c=127 1 1.00..00× 20

...
c=254 xmax 1.11...11× 2127

TABLE 1.6: IEEE single precision positive elements

Parameter Expression(base 2) Decimal value
xmin 2−126 1.175494× 10−38

xmax (1.1...1)2 × 2127 = 2128(1− 2−24) 3.402824× 1038

εM 2−23 1.192093× 10−7

p 24=23+implicit bit ≈ 7

TABLE 1.7: xmin, xmax, ε machine and p in IEEE single precision

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 21

8 bytes, a total of 64 bits
t sign biased exponent c f part of mantissa m
1 bit 11 bits 52 bits

FIGURE 1.2: A word of 8 bytes in IEEE double precision

c f e = c− 1023 m Number being represented
0 0 Not Applicable 0.0 ±0
0 6= 0 Not Applicable 0.f (−1)t(0.f)2−1022

0 < c < 2047 any −1023 < e < 1024 1.f (−1)t(1.f)2c−1023

2047 0 Not Applicable 1.0 ±∞
2047 6= 0 Not Applicable 1.f NaN (Not a Number)

TABLE 1.8: Values in IEEE - double precision system

2. IEEE double precision floating point system
Definition 1.1 is also used to define the IEEE double precision system
Fd = F (2, 53,−1022, 1023), where a non-zero number in standard float-
ing point representation corresponds to:

x = ±(1.f)2 × 2e = (−1)t(1.f)2 × 2c−1023

with e = c− 1023, and the biased exponent c verifying: 1 ≤ c ≤ 2046.
The system Fd uses a word of 8 bytes organized as indicated in Figure
1.2. On the basis of those concepts explained for Fs, the number system
Fd is displayed in Table 1.8 and the basic parameters for Fd are displayed
in Table 1.9. Note that the epsilon machine εM = 2−52 ≈ 2.2× 10−16 <
101−16. This implies that in a double precision computation corresponds
to approximately 16 significant decimal digits. Note that in the process
of representing machine numbers in Fs or Fd, it is convenient to use the
hexadecimal symbols (base 16) to get a “compact” representation of
binary contents of a computer word, whether 4 or 8 bytes. Considering
the symbols A, B, C, D, E, F as representing 10, 11, 12, 13, 14, and 15,

Parameter Expression(base 2) Decimal value
xmin 2−1022 2.2250738507201× 10−308

xmax (1.1...1)2 × 21023 = 21024(1− 2−53) 1.79769313486231× 10308

εM 2−52 2.220446049250313× 10−16

p 53=52+implicit bit ≈ 16

TABLE 1.9: xmin, xmax, ε machine and p in IEEE double precision

© 2014 by Taylor & Francis Group, LLC

22 Introduction to Numerical Analysis and Scientific Computing

Hexadecimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111

TABLE 1.10: Binary representations of hexadecimal symbols

Table 1.10 provides the hexadecimal symbols representations in base 2.
Representing then machine binary numbers with hexadecimal symbols
is particularly easy. We need only regroup the binary digits from groups
of 3 (as required in the octal system), to groups of 4. Note that the
reverse procedure can also be used.

Example 1.14 Determine the hexadecimal representation of the deci-
mal number d = −52.234375 in both single precision and double preci-
sion.

We start by converting the given number to binary, then normalize it:

• E(x)=(52)10 = (64)8 = (110 100)2

• F(x)=(0.234375)10 = (0.17)8 = (0.001 111)2

• Therefore:
(52.234375)10 = (110 100.001 111)2 = (1.101 000 011 110)2 × 25

In Fs(2, 24,−126,+127):
- The normalized mantissa of d is m = 1.101 000 011 110
- The exponent of d is e = (5)10 = c − 127 implying that the biased
exponent is c = (132)10 = (204)8 = (10 000 100)2

The single precision machine representation of d is then:

[1100 0010 0101 0000 1111 0000 0000 0000]2 = [C250F000]16

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 23

In Fd(2, 53,−1022,+1023):
- The normalized mantissa of d is m = 1.101 000 011 110
- The exponent of d is e = (5)10 = c− 1023, and the biased exponent is
therefore c = (1028)10 = (2004)8 = (10 000 000 100)2

The double precision machine representation of d is:

[1100 0000 0100 1010 0001 1110 0000 ... 00 00]2 = [C04A1E0000000000]16

Example 1.15 Determine the binary number x in Fs that corresponds
to [45DE4000]16, then find its decimal representation.

The 32 bits string representation (or machine number representation) of
x is:

[01000101110111100100000000000000]2

The biased exponent is c = (10 001 011)2 = (213)8 = (139)10, so e =
139− 127 = 12. Therefore:

(x)2 = +(1.101 111 001)2 × 212

Example 1.16 Determine the machine number representation of the binary
number b = 2−128 in IEEE single precision.

b = 2−128 < 2−126 = xmin, meaning that b is a denormalized number in single
precision. Moreover, as b = 2−2 × 2−126 = 0.01 × 2−126, its corresponding
machine number is:

[00000000001000000000000000000000]2

1.4.3 Denormalized Numbers in MATLAB

The default format for numbers in MATLAB is IEEE double precision. One
can easily check out the denormalized numbers in the system, as indicated
through the following set of commands.

realmin %2^(-1022)

ans =

2.2251e-308

>> 0.5*2^(-1022)

ans =

1.1125e-308

>> 0.25*2^(-1022)

ans =

5.5627e-309

>> 0.125*2^(-1022)

ans =

2.7813e-309

© 2014 by Taylor & Francis Group, LLC

24 Introduction to Numerical Analysis and Scientific Computing

1.4.4 Rounding Errors in Floating Point Representation of
Numbers

Consider a general floating point system F = F (β, p, emin, emax), with
β ≥ 2. For all x ∈ R with xmin < |x| < xmax, and x 6∈ F, we seek for a
procedure leading to the representation of x in F . For such x, there exist x1

and x2 = succ(x1), with x1, x2 ∈ F , such that x1 < x < x2. The process
of replacing x by its nearest representative element in F is called correctly
rounding, and the error involved in this approximation is called round-off
error. We want to estimate how large it can be.

Definition 1.4 The floating point representation of x in F is an application
fl: R → F , such that fl(x) = x1 or fl(x) = x2 following one of the rounding
procedures defined below.

1. Rounding by Chopping:
fl0(x) = x1, if x > 0, (and fl0(x) = x2, if x < 0)
(i.e., fl0(x) is obtained by simply dropping the excess of digits in x)

2. Rounding to the closest:

(a) flp(x) = x1 if |x− x1| < |x− x2|
(b) flp(x) = x2 if |x− x2| ≤ |x− x1|

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 25

Remark 1.3

Note that to round x < 0, we could apply the above procedures to |x| first,
then multiply the result obtained by −1.

Remark 1.4 Let x = (1.b1..b23b24b25...)2. Rounding x in Fs to the closest
stands as follows:

• If b24 = 0, then flp(x) = x1.

• If b24 = 1 then flp(x) = x2.

Proof. To obtain this result, based on the definition above, simply note that
if

x1 = (1 · b1b2...b23)2e, andx2 = succ(x1) = x1 + (2−23)2e

then the midpoint of the line segment [x1, x2] is

xM =
x1 + x2

2
= x1 + (2−24)2e = 1 · b1...b231 ; (xM /∈ F)

Consequently, since in the general case xM = (x+ β−p+1

2 ×βe) is the midpoint
of the line segment [x, succ(x)], one easily verifies the following result graphi-
cally:

Theorem 1.3 Let x ∈ R and x 6∈ F = F (β, p, emin, emax), with xmin < |x| <
xmax. Then:

flp(x) = fl0(x+
β−p+1

2
× βe)

Example 1.17 Let x = (13.14)10. Find the internal representation of x using
IEEE single precision notation (rounding to the closest if needed). Find then
the hexadecimal representation of x.

As a first step we convert x to a binary number:

x = (1101.001000111101011100001010001111...)2

We next normalize the number obtained:

x = (1.101001000111101011100001010001111...)2 × 23

Hence, the 2 successive numbers x1 and x2 of Fs are:

x1 = (1.10100100011110101110000)2 × 23

x2 = (1.10100100011110101110001)2 × 23

Obviously, rounding x to the closest gives flp(x) = x2.
Note also that e = 3 and c = (130)10 = (10000010)2

is as follows:

© 2014 by Taylor & Francis Group, LLC

26 Introduction to Numerical Analysis and Scientific Computing

4 bytes = 32 bits
t c f
0 10000010 10100100011110101110001

or also equivalently:

01000001010100100011110101110001

with hexadecimal representation:

[4 1 5 2 3 D 7 1]16

We turn now to the error that can occur when we attempt to represent a
given real number x in F. As for relative error estimates we have the following.

Proposition 1.1 Let x ∈ R with x /∈ F = F (β, p, emin, emax) and xmin <
|x| < xmax. Then, the representations of x in F verify the following relative
error estimates:

1. |x−fl0(x)|
|x| < εM ,

2.
|x−flp(x)|
|x| ≤ 1

2εM ,

where εM = β−p+1 is the epsilon machine of the system.

Proof. Without loss of generality, we shall prove the above properties for
positive numbers. Let x1 and x2 be in F(β, p, emin, emax), such that

x1 < x < x2 = succ(x1).

Then,

|x− fl0(x)| < (x2 − x1) and |x− flp(x)| ≤ (x2 − x1)

2
.

Furthermore, given that x1 < x, the estimates of the proposition are obviously
verified since in both cases x2−x1

x1
≤ εM .

Remark 1.5 Note that Proposition 1.1 can be summarized by the following
estimate:

|x−fl(x)|
|x| ≤ u where u =

{
εM , if fl = fl0
εM/2, if fl = flP

This inequality can also be expressed in the more useful form:

fl(x) = x(1 + δ) where |δ| ≤ u (1.6)

To see that, simply let δ = fl(x)−x
x . Obviously |δ| ≤ u, with fl(x) yielding the

required result.

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 27

Remark 1.6 When computing a mathematical entity E ∈ R (for example,
E=π,

√
2, ln 2,..) up to r decimal figures, one seeks an approximation Ê

to E such that Ê ∈ F(10, r, emin, emax), a user floating point system with a
base of 10 and r significant digits. A rounding procedure to the closest would
yield Ê satisfying the following error estimate:

|E − Ê|
|E|

≤ 1

2
101−r.

To illustrate, we give some examples.

Example 1.18 1. Consider E = π = 3.14159265358979... ∈ R. In seeking
for the representative Ê of π ∈ F = F (10, 6, emin, emax), we first look for
2 successive numbers x1 and x2 in F such that

x1 ≤ E ≤ x2.

Obviously x1 = 3.14159 and x2 = 3.14160. Rounding to the closest would
select Ê = 3.14159, with

|E − Ê|
|E|

≤ 1

2

|x2 − x1|
x1

= 1.59155077526×10−6 ≤ 1

2
101−6 = 5×10−6 =

εM
2

2. Similarly, Ê = 1.4142136 approximates E =
√

2 up to 8 significant
figures. Since

x1 = 1.4142135 <
√

2 = 1.414213562373095... < x2 = 1.4142136

and

|x2 − x1|
2x1

=
7.071067628

2
× 10−8 = 0.35× 10−7 < 0.5× 101−8 =

εM
2
.

1.5 Floating Point Operations

For a given arithmetic operation · = {+,−,×,÷} in R, we define respec-
tively in F the floating point operations: � = {⊕,	,⊗,�}, i.e.,

� : F× F→ F

Each of these operations is called a flop and, according to IEEE standards,
is designed as follows.

© 2014 by Taylor & Francis Group, LLC

28 Introduction to Numerical Analysis and Scientific Computing

Definition 1.5 In the standards of floating point operations in IEEE conven-
tion:

∀x and y ∈ F, x� y = fl(x · y).

This definition together with (1.6) leads to the following estimate:

x� y = (x · y)(1 + δ), with |δ| ≤ u,

where u = εM or u = εM
2 , depending on the chosen rounding procedure.

Practically, Definition 1.5 means that x � y is computed according to the
following steps:

• First: correctly in R as x · y

• Second: normalizing in F

• Third: rounding in F

Under this procedure, the relative error will not exceed u.

Remark 1.7 Let x, y ∈ F = F (β, p, emin, emax).

x⊕ y = fl(x+ y) = (x+ y)(1 + δ) = x(1 + δ) + y(1 + δ)

meaning that x ⊕ y is not precisely (x + y), but is the sum of x(1 + δ) and
y(1+ δ), or also that it is the exact sum of a slightly perturbed x and a slightly
perturbed y.

Example 1.19 If x, y, and z are numbers in Fs, what upper bound can be
given for the relative round-off error in computing z ⊗ (x⊕ y), with rounding
to the closest (fl = flp).
In the computer, the innermost calculation of (x+ y) will be done first:

fl(x+ y) = (x+ y)(1 + δ1) , |δ1| ≤ 2−24

Therefore:

fl[z fl(x+ y)] = z fl(x+ y)(1 + δ2) , |δ2| ≤ 2−24

Putting both equations together, we have:

fl[z fl(x+y)] = z(x+y)(1+δ1)(1+δ2) = z(x+y)(1+δ1+δ2+δ1δ2) = z(x+y)(1+δ1+δ2) = z(x+y)(1+δ),

where δ = δ1 + δ2.

In this calculation, we neglect |δ1δ2| ≤ 2−48. Moreover, |δ| = |δ1 + δ2| ≤
|δ1|+ |δ2| ≤ 2−24 + 2−24 = 2−23

Although rounding errors are usually small, their accumulation in long and
complex computations may give rise to unexpected wrong results, as shown
in the following example:

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 29

n In
|I−In|
|I|

128 5.0003052× 10−1 6.1035156× 10−5

256 5.0000769× 10−1 1.5377998× 10−5

512 5.0000197× 10−1 3.9339066× 10−5

1024 5.0000048× 10−1 9.5367432× 10−7

2048 4.9999997× 10−1 5.9604645× 10−8

4096 5.0000036× 10−1 7.1525574× 10−7

8192 4.9999988× 10−1 2.3841858× 10−7

16384 5.0000036× 10−1 7.1525574× 10−7

TABLE 1.11: Effects of round-off error propagation on the convergence of
the sequence In defined in (1.7)

Example 1.20 Consider the following sequence of numbers:

I1 = 1, In =
2

n
[(

1

n
)3 + (

2

n
)3 + ...+ (

n− 1

n
)3 +

1

2
], n = 2, 3, ... (1.7)

It can be proved that limn→∞ In = 0.5.

However, when we compute In in single precision MATLAB, we obtain the
results displayed in Table 1.11, which clearly shows that the relative errors for
n = 2p, p = 7, 8, 9, 10, 11, 12, 13, 14. One can check that such relative errors
decrease for p ≤ 11 and stop following a decreasing pattern for p > 11, vastly
because of round-off errors propagation.
A similar case regarding (non-)convergence due to rounding errors can be also
found in [26], p. 7.
We look now for specific problems caused by rounding errors propagation.

1.5.1 Algebraic Properties in Floating Point Operations

Since F is a proper subset of R, elementary algebraic operations on floating
point numbers do not satisfy all the properties of analogous operations in R.
To illustrate, let x, y, z ∈ F. The floating point arithmetic operations verify
the following properties:

1. Floating point addition is commutative in F

x⊕ y = fl(x+ y) = fl(y + x) = y ⊕ x

2. Floating point multiplication is commutative in F

x⊗ y = y ⊗ x

3. Floating point addition is not associative in F

(x⊕ y)⊕ z 6≡ x⊕ (y ⊕ z)

© 2014 by Taylor & Francis Group, LLC

30 Introduction to Numerical Analysis and Scientific Computing

4. Floating point multiplication is not associative in F

(x⊗ y)⊗ z 6≡ x⊗ (y ⊗ z)

5. Floating point multiplication is not distributive with respect to floating
point addition in F

x⊗ (y ⊕ z) 6= (x⊗ y)⊕ (x⊗ z)

Example 1.21 Let x = 3.417 × 100, y = 8.513 × 100, z = 4.181 × 100 ∈
F(10, 4,−2, 2). Verify that addition is not associative in F.

x⊕ y = 1.193× 101 and (x⊕ y)⊕ z = 1.611× 101,
while: y ⊕ z = 1.269× 101 and x⊕ (y ⊕ z) = 1.610× 101.
Particularly, associativity is violated whenever a situation of overflow occurs
as in the following example.

Example 1.22 Let a = 1 ∗ 10308 , b = 1.01 ∗ 10308 and c = −1.001 ∗ 10308 be
3 floating point numbers in FD expressed in their decimal form.

a⊕ (b⊕ c) = 1 ∗ 10308 ⊕ 0.009 ∗ 10308 = 1.009 ∗ 10308

while
(a⊕ b)⊕ c =∞

since (a⊕ b) = 2.01 ∗ 10308 ≡ ∞ > xmax ≈ 1.798 ∗ 10308 in FD

1.5.2 The Problem of Absorption

Let x, y be two non-zero numbers ∈ Fs, with

x = mx × 2ex , y = my × 2ey

Assume y < x, so that:

x+ y = (mx +my × 2ey−ex)× 2ex .

Clearly, since my < 2, if also ey − ex ≤ −25, then

x+ y < (mx + 2−24)× 2ex = (x+ succ(x))/2.

Hence using fl = flp, one gets:

x⊕ y = flp(x+ y) = x,

although y 6= 0. In such a situation, we say that y is absorbed by x.

Definition 1.6 (Absorption Phenomena) Let x and y be 2 non-zero elements
in F(β, p, emin, emax). y is said to be absorbed by x, if x⊕ y = x.

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 31

Example 1.23 Consider the sum of n decreasing positive numbers {xi|i =
1, ..n}, with x1 > x2 > ... > xi > xi+1 > ... > xn, and let Sn =

∑n
i=1 xi.

There are two obvious ways to program this finite series; by increasing or
decreasing index. The corresponding algorithms are as follows:

Algorithm 1.6 Harmonic Series Evaluation by Increasing Indices

% Input : x=[x(1),...,x(n)]

% Output : sum of all components of x by Increasing index

function S=sum1(x)

S=0 ;

n=length(x) ;

for i=1:n

S=S+x(i)

end

which leads then for example for n = 4 to the floating point number

S1 = (((x1 ⊕ x2)⊕ x3)⊕ x4).

Algorithm 1.7 Harmonic Series Evaluation by Decreasing Indices

function S=sum2(x)

% Input x=[x(1),...,x(n)]

% Output : sum of all components of x by Decreasing index

S=0 ;

n=length(x) ;

for i=n:-1:1

S=S+x(i)

end

which gives for n = 4, the floating point number

S2 = (((x4 ⊕ x3)⊕ x2)⊕ x1)

Obviously, S1 6= S2 and S2 is more accurate than S1 that favors the absorption
phenomena.

Example 1.24 Consider the following sequence of numbers in F (10, 4,−3, 3),
x1 = 9.999×100, x2 = 9.999×10−1, x3 = 9.999×10−2 and x4 = 9.999×10−3.

The exact value of
∑4
i=1 xi is 11.108899 = 1.1108899 × 101. Using rounding

by chopping, for example, the first algorithm would give 1.108×101 while the
second provides 1.110× 101!

© 2014 by Taylor & Francis Group, LLC

32 Introduction to Numerical Analysis and Scientific Computing

Example 1.25 Consider Euler’s number e = 2.718217....... It is given by the
Taylor’s series expansion of ex for x = 1:

e = 1 +
1

1!
+

1

2!
+ ...

1

n!
+ ...

Computing e up to 8 significant figures with rounding to the closest and using
11 terms, one gets, summing up by increasing n:

1 +
1

1!
+

1

2!
+ ...

1

10!
= 2.7182820,

while summing by decreasing n, one obtains:

1

10!
+

1

9!
+ ...+

1

1!
+ 1 = 2.7182817.

1.5.3 The Problem of Cancellation or Loss of Precision

A loss of significance can occur when computing in normalised floating
point systems. This problem of cancellation occurs when subtracting two pos-
itive floating point numbers of almost equal amplitude. The closer the num-
bers are, the more pronounced is the problem. To start, consider the following
example.

Example 1.26 Let x1, x2 ∈ F (10, 5,−3, 3). To subtract x2 = 8.5478 × 103

from x1 = 8.5489× 103, the operation is done in two steps:

x1 8.5489× 103

x2 8.5478× 103

x = x1 − x2 0.0011× 103

Normalized result 1.1000× 100

Hence the result appears to belong to a new floating point system
F(10, 2,−3, 3) that is less precise (p = 2) than the original one (p = 5). Three
zeros have been supplied in the last three least significant fractional places.
We are experiencing the phenomenon of Cancellation that causes loss of
significant figures in floating point computation. This can be summarized
by the following proposition.

Proposition 1.2 Let x, y ∈ F = F (β, p, emin, emax). Assume x and y are two
numbers of the same sign and the same order, (|x|, |y| = O(βe)). Then there
exists k > 0, such that x − y is represented in a less precise floating point
system F (β, p− k, emin, emax).

Proof. Assume the two numbers x and y are expressed as follows.

x = (a0 + a1β
−1 + ...+ akβ

−k + ...+ ap−1β
−p+1)× βe

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 33

and

y = (a′0 + a′1β
−1 + ...+ a′kβ

−k + ...+ a′p−1β
−p+1)× βe

with ai = a′i for i ≤ k − 1 < p− 1. It is obvious that:
x − y = ((ak − a′k)β−k + ... + (ap−1 − a′p−1)β−p+1) × βe = (ckβ

−k + ... +
cp−1β

−p+1)× βe
Hence: x− y = (ck + ...+ cp−1β

−(p−k−1))× βe−k, with ck 6= 0
Consequently, x− y is represented in a system in which precision is p− k.

Example 1.27 Let x1 = 1.00000000000000000000011 × 2−126 and x2 =
1.00000000000000000000010 × 2−126 be 2 numbers ∈ FS (2, 24,−126,+127).
To subtract x2 from x1:

x1 1.00000000000000000000011× 2−126

x2 1.00000000000000000000010× 2−126

x = x1 − x2 0.00000000000000000000001× 2−126

Normalized result 2−149 < xmin

In that extreme case, rounding the result to the closest gives flp(x) = 0,
although x1 6= x2 !

Example 1.28 Alternate series and the phenomenon of cancellation.

Consider the example of computing exp(−a), a > 0. For that purpose, we
choose one of the following alternatives:

1. A straightforward application of the Taylor’s series representation of
exp(x), giving for x = −a, an alternating series:

exp(−a) = 1− a+
a2

2!
− a3

3!
+
a4

4!
+ ...+ (−1)n

an

n!
+ ..., (1.8)

2. On the other hand, computing first exp(a) for a > 0, using the same
series representation, which however has all its terms positive,

exp(a) = 1 + a+
a2

2!
+
a3

3!
+
a4

4!
+ ...+

an

n!
+ ..., (1.9)

followed up by an inverse operation:

exp(−a) = 1/ exp(a). (1.10)

would yield more accurate results.

Computing with the first power series for large negative values of a, leads to
drastic cancellation phenomena, while the second alternative provides accurate
results as the following example indicates.

© 2014 by Taylor & Francis Group, LLC

34 Introduction to Numerical Analysis and Scientific Computing

Example 1.29 Consider the computation of exp(−20), which exact value
is 2.061153622438558× 10−9.

The implementation of the following 2 algorithms is done in MATLAB, which
uses double precision IEEE formats:

Algorithm 1.8 Implementing ex: Alternative 1

function y=myexp(x)

tol=0.5*10^(-16);

y=1;

k=1;

T=x;

while abs(T)/y>tol;

y=y+T;k=k+1;T=T*x/k;

end

Algorithm 1.9 Implementing ex: Alternative 2

function y=myexp(x)

tol=0.5*10^(-16);

y=1;

k=1;

v=abs(x);

T=v;

while abs(T)/y>tol;

y=y+T;k=k+1;T=T*v/k;

end

if x<0

y=1/y;

end

The results came as follows.

First alternative (1.8) Value
−19

Second alternative (1.10) Value
2.061153622438558× 10−9

Another example deals with the computation of the roots of a quadratic equa-
tion.

Example 1.30 Consider the computation of the roots of x2 + 2bx + c = 0,
where c is a positive number “much smaller” than b2.

There are 2 ways for handling the numerical computation of the solutions to
this obvious problem.

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 35

1. A straightforward application of the well-known formulae:

x1 = −b−
√
b2 − c ≈ −2b; x2 = −b+

√
b2 − c ≈ 0. (1.11)

There is obviously, in this way, loss of significant figures when computing
x2

2. However, computing first x1 then using

x2 =
c

x1
(1.12)

would not result in loss of digits.

1.6 Computing in a Floating Point System

Clearly in normalized floating point systems F = F (β, p, emin, emax), no
irrational nor rational numbers that do not fit the finite format imposed by
the computer can be represented, neither too large nor too small real numbers
are. Thus the effective number system for a computer is not a continuum, but
rather a non-uniformly distributed finite subset of the rational numbers, i.e.,
a “strange” set of rational numbers with irregular gaps. The total number of
elements in F is easily computed and is given by:

card(F) = 2(β − 1)(β)p−1(emax − emin + 1) + 2 (1.13)

Note that this count excludes the denormalized numbers, but includes ±0.
In what follows, we analyze particularly some cardinality and distribution
properties of floating point systems F, where the exponents are such that
emax = |emin| + 1, as for example the cases of the IEEE single and double
precision systems Fs and Fd.

1.6.1 Cardinality and Distribution of Special Floating Point
System

Let F = F(2, p, Emin, Emax), with Emax = |Emin|+ 1, and Emin < 0. Note
that

card(F) = 2 ∗ card(F+) + 2,

where F+ is the set of all non-zero positive elements of F. Based on (1.13), it
can be easily shown that:

card(F+) = 2p−1(Emax + |Emin|+ 1).

© 2014 by Taylor & Francis Group, LLC

36 Introduction to Numerical Analysis and Scientific Computing

Hence:
NF = card(F) = 2p(Emax + |Emin|+ 1) + 2

Since also Emax = |Emin|+ 1, then:

NF = 2p(2Emax) + 2 = 2p+1(Emax) + 2.

On the other hand, if we consider now F0, the subset of non-zero elements of
F defined as follows:

F0 = {x ∈ F|x = ±1.f × 2e, Emin ≤ e ≤ 0}

one finds that:
NF0

= card(F0) = 2p(Emax)

since in that case the number of different values taken by the exponent in F
is

|Emin|+ 1 = Emax

Note now that NF0
represents half of the total of the non-zero elements of F,

since:
NF0

NF − 2
=

2p(Emax)

2p+1(Emax)
=

1

2
. (1.14)

This leads to the following proposition:

Proposition 1.3 In a floating point system F(2, p, Emin, Emax), with Emax =
|Emin|+1, half of the non-zero floating point numbers are located in the interval
(−2, 2) with the other half located in [−xmax,−2] ∪ [2, xmax].
Proof. This follows from formula (1.14).

It is also worth noting that all floating point numbers ±1.f × 2e become
integers for e ≥ p−1. These facts are visualized in the simulation that follows
in the next section.

1.6.2 A MATLAB Simulation of a Floating Point System

The following function generates the non-negative numbers of a floating
point system F(b, p, emin, emax).

Algorithm 1.10 Simulation of a Floating Point System

function x=float_v(b,p,emin,emax)

x=[];

epsm=b^(-p+1);

M=1:epsm:b-epsm;

E=1;

for e=0:emax

x=[x M*E];

E=b*E;

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 37

FIGURE 1.3: Distribution of numbers in F(2, 4,−6, 7)

end

E=1/b;

for e=-1:-1:emin

x=[M*E x];

E=E/b;

end

x=[0 x];

As a result, we plot respectively in Figures 1.3 and 1.4 the distribution of
non-negative numbers of F(2, 4,−6, 7) and F(2, 3,−3, 4).

1.6.3 Tips for Floating Point Computation

To conclude, we may set an ensemble of rules that could avoid situations
where accuracy can be jeopardized by the propagation of rounding errors
through all type of floating point operations and more particularly through
absorption and cancellation. When programming in finite precision arithmetic
requests, some safeguarding habits are useful whenever possible. For exam-
ple:

1. Seek always algorithms that would solve numerically a problem with the
least number of flops.

2. Use Taylor’s series expansions to avoid loss of significant figures.

3. Avoid using alternating series in case the solution to the problem can
be obtained using a series of positive (or negative) numbers.

4. Sum up positive elements of a series by adding from the smallest to the
largest.

© 2014 by Taylor & Francis Group, LLC

38 Introduction to Numerical Analysis and Scientific Computing

FIGURE 1.4: Distribution of numbers in F(2, 3,−3, 4)

1.7 Exercises

1. Find the binary representation of the following decimal numbers.

(a) e ≈ (2.718)10

(b) 7
8

(c) (792)10

2. Convert the following decimal numbers to octal numbers.

(a) 37.1

(b) 12.34

(c) 3.14

(d) 23.38

(e) 75.231

(f) 57.231

3. Convert the following binary numbers to octals and then to decimal
numbers.

(a) (110 111 001.101 011 101)2

(b) (1 001 100 101.011 01)2

4. Convert the following numbers as required.

(a) (100 101 101)2 = ()8 = ()10

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 39

(b) (0.782)10 = ()8 = ()2

(c) (47)10 = ()8 = ()2

(d) (0.47)10 = ()8 = ()2

(e) (51)10 = ()8 = ()2

(f) (0.694)10 = ()8 = ()2

(g) (110 011.111 010 110 110 1)2 = ()8 = ()10

(h) (351.4)8 = ()2 = ()10

(i) (45753.127664)8 = ()2 = ()10

5. Convert x = (0.6)10 first to octal and then to binary. Check your result
by converting directly to binary.

6. Prove that the decimal number 1
7 does not have a finite expansion in

the binary system.

7. Prove or disprove - by giving a counter example - the following state-
ments:

(a) Any real number that has a finite representation in the binary
number system is of the form ±m/2n, where n and m are positive
integers.

(b) Any real number of the form ±m/2n has a finite representation in
the binary number system

(c) Any number that has a finite representation in the binary system
must have a finite representation in the decimal system.

(d) Any number that has a finite representation in the decimal system
must have a finite representation in the binary system.

(e) A number has a finite representation in the octal system if and only
if it has a finite representation in the binary system.

8. Display the positive elements of the floating point system F =
F (2, 3,−2,+3). Determine the cardinality of |F .

9. Determine the IEEE single precision representation of the decimal number
64.015625.

10. Determine the IEEE single and double precision representations of the
following decimal numbers:

(a) 0.5, −0.5

(b) 0.125, −0.125

(c) 0.03125, −0.03125

(d) 1.0, −1.0

© 2014 by Taylor & Francis Group, LLC

40 Introduction to Numerical Analysis and Scientific Computing

(e) +0.0, −0.0

(f) −987.0054321

(g) 385.65

(h) 10−2

11. Identify the decimal floating point numbers corresponding to the follow-
ing bit strings in the IEEE single precision system:

(a) 0 00000000 00000000000000000000000

(b) 1 00000000 00000000000000000000000

(c) 0 11111111 11111111111111111111111

(d) 1 11111111 11111111111111111111111

(e) 0 00000001 00000000000000000000000

(f) 0 10000001 11110000000000000000000

(g) 0 01111111 00000000000000000000000

(h) 0 01111011 11111001100110011001101

12. In the IEEE single precision system, what are the bit-string representation
for the following sub-normal numbers?

(a) 2−128 + 2−139

(b) 2−132 + 2−145

(c) 2−129 + 2−130

(d)
∑149
k=127 2−k

13. Determine the decimal numbers that have the following IEEE single pre-
cision system representations:

(a) [3F27E520]16

(b) [CA3F2900]16

(c) [C705A700]16

(d) [494F96A0]16

(e) [4B187ABC]16

(f) [45223000]16

(g) [45607000]16

(h) [C553E100]16

(i) [437F0001]16

14. Convert the greatest positive element in single precision to an octal num-
ber “o” and write it in normalized floating point notation. Convert then
the resulting “o” to a decimal number “d” and write it in normalized
floating point notation.

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 41

15. (a) Identify the binary number x whose 32 bit-string representation in
single precision is as follows:

1 00000001 00000000000000000000000

(b) Find the next largest and smallest machine numbers in single pre-
cision for the number x given above, then write their hexadecimal
representation.

16. Consider the binary number b = 1.01× 2+128.

(a) Write the machine number representing b in IEEE double precision,
then write its corresponding hexadecimal representation.

(b) Write the machine number representing b in IEEE single precision,
then write its corresponding hexadecimal representation.

(c) Let xM be the midpoint of the interval [0, b]. Write the machine
number representing xM in IEEE single precision, then write its
hexadecimal representation.

17. Consider the binary number b = 2−127 + 2−130.

(a) Write the machine number representing b in IEEE single precision,
then write its corresponding Hexadecimal representation.

(b) Find the successor of b (y = succ(b)) in IEEE single precision, then
write its corresponding machine number and Hexadecimal repre-
sentation.

(c) Write the machine number representing b in IEEE double precision,
then write its corresponding hexadecimal representation.

(d) Find the predecessor of b (x = pre(b)) in IEEE double precision,
then write its corresponding machine number and hexadecimal rep-
resentation.

18. For some values of x, the following functions cannot be accurately com-
puted by using the given formula. Explain and find a way around the
difficulty.

(a) f(x) =
√
x2 + 1− x

(b) f(x) =
√
x4 + 4− 2

(c) f(x) =
√
x+ 2−

√
x

(d) f(x) = (
√
x+ 4)1/2 − (

√
x)1/2

19. For some values of x, the following functions cannot be accurately com-
puted by using the given formula. Explain and find a way around the
difficulty.

(a) f(x) = 1− sinx

© 2014 by Taylor & Francis Group, LLC

42 Introduction to Numerical Analysis and Scientific Computing

(b) f(x) = 1− cosx

(c) f(x) = 2 cos2 x− 1

(d) f(x) = (cosx− e−x)/ sinx

(e) f(x) = ex − sinx− cosx

20. For some values of x, the following functions cannot be accurately com-
puted by using the given formula. Explain and find a way around the
difficulty.

(a) f(x) = tanhx = ex−e−x
ex+e−x

(b) f(x) = 1
x3 (sinhx− tanhx)

21. For some values of x, the following functions cannot be accurately com-
puted by using the given formula. Explain and find a way around the
difficulty.

(a) f(x) = ln(x)− 1

(b) f(x) = lnx− ln (1/x)

(c) f(x) = x−2(sinx− ex + 1)

(d) f(x) = ex − e

22. Let f(x) = ln(x +
√
x2 + 1). Show how to avoid loss of significance in

computing f(x) when x is negative. Hint: Compute first f(−x).

23. For some values of x, the function f(x) = x+
√
x2 − 1 cannot be accu-

rately computed by using the given formula.

(a) What values of x are involved? What remedy do you propose?

(b) Carry 3 decimal significant figures, for example in F (10, 3,−24,+25)
with rounding to the closest, and compute f(−102) directly,
then using the suggested remedy. (The exact value of f(−102) is
−0.005000125006250).

24. Let f(x) = (ex−1)−sin x
x2

(a) For some values of x the function f(x) cannot be accurately com-
puted by using the given formula. What are the non-negative values
of x that cause the problem? What remedy do you propose?

(b) Use the first 2 terms only of the Taylor’s series derived in (a), to
approximate f(10−4) in F (10, 5,−15,+15), rounding to the closest.

(c) Find the absolute relative error in this approximation if the exact
value of f(10−4) is 0.50003333807.....

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 43

25. Let

f(x) =
ex − e−x

x

(a) For which value of x, the given function cannot be accurately com-
puted. Explain and find a way around the difficulty.

(b) Carry 3 significant digits with rounding to the closest to evaluate
f(0.1) directly.

(c) Repeat part (b) using the suggested remedy.

(d) The actual value is f(0.1) = 2.003335000. Find the relative error
for the values obtained in parts (b) and (c).

26. Use the Taylor polynomial of degree 4 to find an approximation to e−3 by
each of the following methods, carrying 3 significant digits with rounding
to the closest:

(a) e−3 =
∑5
i=0

(−1)i3i

i!

(b) e−3 = 1
e3 = 1∑5

i=0
3i

i!

(c) An approximate value of e−3 is 6.74 × 10−3. Compare this value
with the results obtained in (a) and (b). Explain your answer.

© 2014 by Taylor & Francis Group, LLC

44 Introduction to Numerical Analysis and Scientific Computing

1.8 Computer Projects

Exercise 1 : Conversion: Decimal - Binary

1. Write a MATLAB

function [Ibase2, Fbase2, b] = Convert10to2(d, k)

that takes as input a non-zero decimal number d and a positive integer
k and converts d to a binary number b up to k fractional digits. Your
function should output the 2 vectors Ibase2 and Fbase2 that represent
respectively the integral and fractional parts of b, and the binary number
b displayed with its sign and its integral and fractional parts.

2. Write a MATLAB

function [Ibase10, Fbase10, d] = Convert2to10(Ibase2, Fbase2)

that takes as input two vectors Ibase2 and Fbase2 that represent re-
spectively the integral and fractional parts of a binary number, converts
to base 10 and outputs the results as 2 numbers Ibase10 and Fbase10

that are respectively the integral and fractional parts of the correspond-
ing decimal number d and the decimal number d displayed with its sign
and its integral and fractional parts.
Hint: Use nested polynomial evaluation.

3. Write a MATLAB

function [B, I] = ConvertFraction10to2Pattern(D,m) that takes
as input a decimal integer D consisting of k digits where m = 10k.
This function converts the decimal fractional f = D

m into a binary frac-
tional number represented by the vector B, and identifies the repeating
pattern in B (if there is any), starting at component I and ending at
n=length(B). In case the converted fractional part is finite, then no re-
peating pattern occurs and the value of I should be zero.
For example:

(a) To convert f = 0.1: input D = 1 and m = 10. This function outputs
B = [00011] and I = 2, since (0.1)10 = (0.0 0011 0011 0011)2

(b) To convert f = 0.25: input D = 25 and m = 100. This function
outputs B = 01 and I = 0, since (0.25)10 = (0.01)2.

Remark: To minimize rounding errors in case I is a “large” number, it
is more efficient to express fractional numbers as a ratio of 2 integers
(for example f= D/m ...).

4. Test each one of the 3 functions above for 3 different cases and save the
results in a Word document.

Exercise 2 : Conversion from Double to Single Precision

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 45

1. Write a MATLAB

function [t e f] = GetVectorD(v) which takes as input a binary
vector v of 64 bits or components representing a machine number in
IEEE double precision, and extracts the values of the sign (t), the
exponent (e) and the fractional part of the mantissa (f).

2. Write a MATLAB

function x = ConvertDoubletoSingle(v) which takes as input a bi-
nary vector v of 64 bits representing a machine number in the IEEE
double precision system. Your function should convert v to a single pre-
cision machine number and should output the result as a vector x of
32 bits, unless x represents a “denormalized number” or “Not a Num-
ber.” In these 2 cases, your function should only display a message: ‘ x

represents NaN ’ or ‘ x represents a denormalized number ’ .
At the end, if x represents an element of FS(2, 24,−126,+127), your
function should also display the corresponding number in normalized
floating point form, i.e., xs = ±1.f × 2e or xs = ±0. Note the following
remarks:

(a) Use rounding by chopping when needed: (fl0).

(b) The smallest single precision denormalized number is: 2−149

(c) For any exponent e < −149, the corresponding number in single
precision is rounded to zero.

3. In Exercise 2, test function 1 for 3 different test cases, then function 2
for 5 different test cases including: “NaN’, denormalized numbers, ±0
and ±∞. Save the results in a Word document.

Call for previous functions when needed.

Exercise 3 : Conversion: Decimal - Octal - Binary

1. Write a MATLAB function [E8 , F8] = Convert2to8(E2, F2) that
takes as input two binary vectors E2 and F2 that are respectively the
integral and fractional parts of a positive binary number b, converts
them to octals and outputs the results as 2 vectors E8 and F8 that are
respectively the integral and fractional parts of a positive octal number
o.

2. Write a MATLAB function [E10, F10, d] = Convert8to10(E8, F8)

which takes as input two octal vectors E8 and F8 that represent respec-
tively the integral and fractional parts of a positive octal number o,
converts to base 10 and outputs the results as 2 decimal numbers, E10
and F10 that represent respectively the integral and fractional parts of
the positive decimal number d using Nested Polynomial Evaluation. As
a last step, this function should also display d as a decimal number.

© 2014 by Taylor & Francis Group, LLC

46 Introduction to Numerical Analysis and Scientific Computing

3. Test each one of the 2 functions above for 3 different test cases and save
the results in a Word document.(Consider different lengths for all input
vectors.)

Exercise 4 : Successors and Rounding Procedures
Let x = +mx × 10ex be a positive decimal number in F (10, p,−20,+20),
written in normalized floating point form, with −20 ≤ ex < +20, and p < 15.

1. Write a MATLAB

function [my, ey] = GetSuccessor(mx, ex, p)

which takes as inputs:

• mx: the mantissa of x in standard normalized floating point notation

• ex: the exponent of x

• p: the precision of the floating point system to which x belongs

Let y be the successor of x in F (10, p,−20,+20). This function should
output:

• my: the mantissa of y displayed with a precision p (the non-
significant digits of the fractional part need not be displayed).
Hint: First compute my, then use num2str(my,p) for output of my
in the required format.

• ey: the exponent of y.

2. Let m = +m1.m2m3...mp be a positive decimal number which integral
part is m1, and fractional part is 0.m2m3...mp.
Write a MATLAB

function [m] = ConvertVectortoDecimal(M)

that takes as input a vector M of length p which ith component is the
decimal digit mi, for i = 1, ..., p, and output is the decimal number m

represented by M.
Use format long g to display m in double precision, discarding the non-
significant zeros of the fractional part.

3. Write a MATLAB function [mz, ez] = Round(Mx, ex, n, t) which
takes as inputs:

• Mx: a vector of length p which components represent the mantissa
mx of the decimal number x ∈ F (10, p,−20,+20).

• ex: the exponent of x.

• n: a positive integer less than or equal to p (n ≤ p), representing
the precision to be reached.

• t: a parameter taking the values 1 or 2.

This function should compute z, the representative of x in
F(10, n,−20,+20) by rounding x to the closest if t = 1 or by chopping
if t = 2, and output:

© 2014 by Taylor & Francis Group, LLC

Computer Number Systems and Floating Point Arithmetic 47

• mz: the mantissa of z displayed with a precision n.
Hint: First compute mz, then use num2str(my,n) to output mz in
the required format (the non-significant zeros of the fractional part
should be discarded).

• ez: the exponent of z

As a result, your function should also display z in normalized floating
point representation in F (10, n,−20,+20).

4. Test each one of the 2 functions above for 3 different test cases and save
the results in a Word document.

Remark: Call for previous functions when needed.

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

Chapter 2

Finding Roots of Real Single-Valued
Functions

2.1 Introduction . 49
2.2 How to Locate the Roots of a Function . 51
2.3 The Bisection Method . 53
2.4 Newton’s Method . 58
2.5 The Secant Method . 67
2.6 Exercises . 73
2.7 Computer Projects . 78

In this chapter we consider one of the most encountered problems in scientific
computing, which is the problem of computing the root or zero of a real-
valued function f of one variable. We focus on what we consider to be three
basic methods: the bisection, Newton’s and the secant methods. In short, any
of these methods compute a solution of a nonlinear equation starting from one
initial data, then adopting some iterative method that - under favorable
conditions - will converge to a zero of the function f .
To study other methods, we refer to other textbooks such as [1], [4] [7], [9],
[15], [21], [26] and [29].

2.1 Introduction

Let f be a real-valued function of a real variable admitting a specific
regularity on its domain D, i.e., let f be k-times continuously differentiable,
with k ≥ 1 (f ∈ Ck(D)). We seek to find the roots of this function f , defined
as follows:

Definition 2.1 The set R of roots of the function f(x) is defined as:

R = {r ∈ R : f(r) = 0}.

Given some computational tolerance εtol = 1
2101−m, m = 1, 2, ..., our objective

is to compute one or more roots of f , within such εtol. Specifically, for any
r ∈ R, we seek an approximation ra to r, (ra ≈ r), such that:

|r − ra|
|r|

≤ εtol. (2.1)

49

© 2014 by Taylor & Francis Group, LLC

50 Introduction to Numerical Analysis and Scientific Computing

(We say then, that ra approximates r up to m decimal places)

The search for a specific root of a function requires two steps.

1. Step 1: Locate the root, i.e., seek an interval (a, b), with O(|b−a|) =
O(|r|), such that:

f(x) ∈ C([a, b]), (i.e., f(x) is at least continuous) (2.2)

r ∈ (a, b) (2.3)

f(a)× f(b) < 0 (2.4)

∀x ∈ (a, b), x 6= r ⇒ f(x) 6= 0 (2.5)

2. Step 2: Generate a sequential process leading to a sequence {rn}n≥0

the terms of which are in (a, b) for all values of n, and that converges to
r, i.e., satisfying:

rn ∈ (a, b)∀n and lim
n→∞

rn = r. (2.6)

The generation of such a sequence is usually done through an iterative
procedure (or method) where rn = g(rn−1, ..., rn−k), k ≥ 1.

We start by introducing some general properties verified by such methods.

Definition 2.2 A numerical method is said to be a one-step method in case
k = 1, the initial state of the sequence being determined by the only choice of
r0; otherwise, it is a multi-step method of order k, and its initial state is
then determined by the choice of r0, .., rk−1.

The order of convergence of a method measures the rate at which the
sequence {rn} generated by the numerical process converges to the root r. It
is defined as follows:

Definition 2.3 Order of Convergence of a Method
A method is of order α > 0, if there exists a sequence of positive numbers
{tn}n≥0, such that ∀n ≥ 1:

|r − rn| ≤ tn, with tn ≤ Ctαn−1 (2.7)

Equivalently, in the special case where tn = |r − rn|:

|r − rn| ≤ C|r − rn−1|α (2.8)

The constants C and α are independent from n, with C < 1 for n = 1.

If α = 1 the convergence is said to be linear, while if α > 1 the convergence
is super-linear. In particular, if α = 2 the convergence of the method is
quadratic. (Note also that the greater α is, the faster is the method.)

© 2014 by Taylor & Francis Group, LLC

Finding Roots of Real Single-Valued Functions 51

Definition 2.4 Global Convergence vs. Local Convergence
A method is said to be globally convergent if the generated sequence {rn}n
converges to r for any choice of the initial state; otherwise it is locally con-
vergent.

When implemented, the process generating the elements of {rn} will be
stopped as soon as the 1st computed element rn0 satisfies some predefined
“stopping criteria.”

Definition 2.5 Stopping Criteria
Given some tolerance εtol, a standard stopping criterion is defined by the fol-
lowing relative estimates:

|rn0 − rn0−1|
|rn0
|

≤ εtol and
|rn − rn−1|
|rn|

> εtol if n < n0. (2.9)

The “remainder” f(rn) can also be used to set a stopping criterion since
f(r) = limn→∞ f(rn) = 0. Thus, one may use a relative evaluation of the
remainder. Specifically, find the first element rn0

of the sequence {rn} satis-
fying:

|f(rn0)|
|f(r0)|

≤ εtol and
|f(rn)|
|f(r0)|

> εtol if n < n0. (2.10)

Note also that by using the Mean-Value Theorem one has:

0 = f(r) = f(rn) + (r − rn)f ′(cn), where cn = r + θ(rn − r), θ ∈ (0, 1).

Thus if f ′ is available (referring also to (2.9)), a more sophisticated stopping
criterion would be:

|f(rn0
)|

|rn0f
′(rn0)|

≤ εtol and
|f(rn)|

|rn0f
′(rn0)|

> εtol if n < n0. (2.11)

In this chapter, we shall analyze successively three root finding iterative meth-
ods: the bisection method, Newton’s method and the secant method

2.2 How to Locate the Roots of a Function

There are basically two approaches to locate the roots of a function f .
The first one seeks to analyze the behavior of f analytically or through
plotting its graph, while the second one transforms the problem of root finding
into an equivalent fixed point problem. We illustrate this concept on some
specific examples.

© 2014 by Taylor & Francis Group, LLC

52 Introduction to Numerical Analysis and Scientific Computing

FIGURE 2.1: Roots of e−x − sin(x), x > 0

Example 2.1 Locate the roots of the function f(x) = e−x − sin(x).

Analyzing the behavior of the function
A first analysis for x < 0 indicates, since the exponential e−x > 1 and sin(x) ≤
1, one concludes that f(x) > 0 for x < 0. Furthermore as f(0) = 1, this implies
that all the roots of the function lie in the interval (0,∞). For x > 0, we put
the problem in a fixed point problem.
For that purpose, we let g1(x) = e−x and g2(x) = sin(x). Solving the problem
f(r) = 0 can be made equivalent to solving the equation g1(r) = g2(r), in
which r becomes a “fixed-point” for g1 and g2. Hence plotting these 2 functions
on the same graph, one concludes straightforwardly that g1 and g2 intersect
at an infinite number of points with positive abscissa, that constitute the set
of all roots of f . This is shown in Figure 2.1

Example 2.2 Locate the roots of the quadratic polynomial
p(x) = x4 − x3 − x− 1.

To use the fixed point method, let g1(x) = x4 − x3 and g2(x) = x + 1. It
is easy to verify in this case that these 2 functions intersect twice, implying
consequently that f has 2 roots located respectively in the intervals (−1, 0)
and (1, 2) as indicated in Figure 2.2.

© 2014 by Taylor & Francis Group, LLC

Finding Roots of Real Single-Valued Functions 53

FIGURE 2.2: Roots of p(x) = x4 − x3 − x− 1

2.3 The Bisection Method

The bisection method is a procedure that repeatedly “halves” the
interval in which a root r has been located. This “halving” process is reiterated
until the desired accuracy is reached. Specifically, after locating the root in
(a, b) we proceed as follows:

• Compute r1 = a+b
2 the midpoint of (a, b) and y = f(r1). If it happens

fortuitously that f(r1) = 0 then the root has been found, i.e., r = r1.
Otherwise y 6= 0 and 2 cases may occur:

– either y × f(a) < 0, implying that r ∈ (a, r1)

– or y × f(a) > 0, in which case r ∈ (r1, b).

Let the initial interval (a, b) = (a0, b0).
Either way, and as a consequence of this first halving of (a0, b0), one
obtains a new interval (a1, b1) = (a0, r1) or (a1, b1) = (r1, b0), such that
one obviously has:

r ∈ (a1, b1), with b1 − a1 =
1

2
(b0 − a0) and |r− r1| ≤ (b1 − a1). (2.12)

• Evidently this process can be repeated, generating a sequence of intervals
{(an, bn)|n ≥ 1} such that:

r ∈ (an, bn) with bn − an =
1

2
(bn−1 − an−1) (2.13)

© 2014 by Taylor & Francis Group, LLC

54 Introduction to Numerical Analysis and Scientific Computing

and a sequence of iterates {rn |n ≥ 1}, with rn ∈ (a, b)∀n, and where

rn =
1

2
(an−1 + bn−1) with |r − rn| ≤ (bn − an). (2.14)

• The process is achieved when the interval (an, bn) is relatively small with
respect to the initial interval, specifically when the least value of n is
reached, for which:

bn − an
b0 − a0

≤ εtol (2.15)

where εtol is a given computational tolerance.

At the end of this process, the best estimate of the root r would be the last
computed value of rn as in (2.14).
The bisection method is implemented through the following algorithm:

Algorithm 2.1 Bisection Method

function r=myBisection(f,a,b,tol,kmax)

% Inputs: f, a, b, kmax, tol

% kmax: maximum acceptable number of iterations; tol=0.5*10^(-p+1)

% S: stopping criteria = [length last (a,b)] / [length initial (a, b)]

% Outputs: r : sequence of midpoints converging to the root within tol.

fa=f(a);

% length of initial interval (a,b)

ab=abs(b-a);

% Initialize n and S

n=1;S=1;

while S>tol & n<kmax

r(n)=(a+b)/2;y=f(r(n));

if y*fa<0

b=r(n);

elseif y*fa>0

a=r(n);fa=y;

elseif y*fa=0

disp(‘r(n) is the root’)

break

end

S=(abs(b-a)/ab);

n=n+1;

end

%If n>=kmax, reconsider the values allocated to the parameters: a, b, S, kmax

if n>=kmax

disp (‘error no convergence’);

else

n=n-1;

end

© 2014 by Taylor & Francis Group, LLC

Finding Roots of Real Single-Valued Functions 55

The parameter kmax is used as a programming safeguard. This eliminates the
possibility of entering an infinite loop in case the sequence diverges, or also
when the program is incorrectly coded. If k exceeds kmax with bk−ak

b−a > tol,
the written algorithm would then signal an error.

Thus, (2.12), (2.13) and (2.14) lead to the following result.

Theorem 2.1 Under assumptions (2.2)-(2.5), the bisection algorithm gener-
ates 2 sequences {an}n≥0 and {bn}n≥0 from which one “extracts” a sequence
of iterates {rn}n≥1, with rn = an or rn = bn, such that:

1. a0 = a, b0 = b,

2. r ∈ (an, bn) with an < r < bn, ∀n ≥ 0,

3. The sequences {an} and {bn} are respectively monotone increasing and
decreasing,

4. bn − an = bn−1−an−1

2 = b−a
2n ∀n ≥ 1, and limn→∞ an = limn→∞ bn = r,

5. |r − rn| ≤ bn − an, ∀n ≥ 1.

Proof. 1. and 2. are obtained by construction.
To prove 3., given (an−1, bn−1) with r ∈ (an−1, bn−1), then by definition of the
method, rn = 1

2 (an−1 + bn−1) will either be an or bn. Therefore, in the case
the process is reiterated, this implies that either an = an−1 and bn < bn−1 or
an > an−1 and bn = bn−1 which proves the required result. (Note that neither
of these sequences can “stagnate.” For example, the existence of an n0 such
that an0

= an, ∀n ≥ n0, would imply that r = an0
, i.e., the process is finite

and the root has been found after n0 steps!)
4. follows from the “halving” procedure. It can be easily shown by induction,
that bn − an = b−a

2n and therefore limn→∞ bn − an = 0, meaning that the se-
quences of lengths {(bn−an)} of the intervals {(an, bn)} converge to 0. Hence,
the sequences {an} and {bn} have the same limit point r.
Finally, to obtain 5., just note again that rn = an or bn, with r ∈ (an, bn).

A consequence of these properties is the linearity of the convergence and an
estimate on the minimum number of iterations needed to achieve a given
computational tolerance εtol. Specifically, we have the following result.

Corollary 2.1 Under the assumptions of the previous theorem, one obtains
the following properties:

1. The bisection method converges linearly, in the sense of definition (2.3),
i.e.,

|r − rn| ≤ tn = bn − an, with tn ≤
1

2
tn−1

© 2014 by Taylor & Francis Group, LLC

56 Introduction to Numerical Analysis and Scientific Computing

2. The minimum number of iterations needed to reach a tolerance of εtol =
0.5× 101−p is given by

k = d(p− 1)
ln(10)

ln(2)
+ 1e

Proof. The first part of the corollary is a direct result from the previous the-
orem. As for the second part, it is achieved by noting that the method reaches
the desired accuracy, according to the selected stopping criteria, whenever n
reaches the value k such that:

bk − ak
b− a

≤ εtol <
bk−1 − ak−1

b− a
< ...

b1 − a1

b− a
=

1

2
<
b0 − a0

b− a
= 1. (2.16)

From equation (2.16) and since bn−an
b−a = 1

2n ∀ n ≥ 0, we can estimate the
least number of iterations required (theoretically) to reach the relative
precision εtol = 1

2101−p, p being the number of significant decimal figures
fixed by the user. Such integer k satisfies then:

1

2k
≤ 1

2
101−p <

1

2k−1
. (2.17)

Equivalently:

−k ln(2) ≤ (1− p) ln(10)− ln(2) < −(k − 1) ln(2),

from which one concludes that:

k ln(2) ≥ (p− 1) ln(10) + ln(2) > (k − 1) ln(2),

leading to:

k ≥ (p− 1)
ln(10)

ln(2)
+ 1 > k − 1, (2.18)

The integer k is computed then as:

k = d(p− 1)
ln(10)

ln(2)
+ 1e.

Note that such k is independent of a and b, since it estimates the ratio bk−ak
b−a , a

measure of the relative reduction of the size of the interval (ak, bk) containing
r. Table 2.1 provides the estimated number of iterations k with respect to a
precision p required by the user. Obviously the method is slowly convergent!
Nevertheless, since at each step the length of the interval is reduced by a factor
of 2, it is advantageous to choose the initial interval as small as possible.
In applying the bisection method algorithm for the above 2 examples, one gets
the following results:

© 2014 by Taylor & Francis Group, LLC

Finding Roots of Real Single-Valued Functions 57

Precision p Iterations k
3 8
5 15
7 21
10 31
15 48

TABLE 2.1: Estimated number of iterations with respect to a requested
precision in the bisection method

Iteration Iterate
1 5.000000 10−1

...
10 5.888672 10−1

11 5.885009 10−1

12 5.886230 10−1

13 5.885010 10−1

14 5.885620 10−1

15 5.885315 10−1

16 5.885468 10−1

17 5.885391 10−1

18 5.885353 10−1

19 5.885334 10−1

20 5.885324 10−1

21 5.885329 10−1

TABLE 2.2: Bisection iterates for the first root of f(x) = e−x − sin(x)

© 2014 by Taylor & Francis Group, LLC

58 Introduction to Numerical Analysis and Scientific Computing

Iteration Iterate
1 1.500000 100

2 2.250000 100

...
10 1.620118 100

11 1.618653 100

12 1.617921 100

13 1.618287 100

14 1.618104 100

15 1.618013 100

16 1.618059 100

TABLE 2.3: Bisection iterates for one root of f(x) = x4 − x3 − x− 1

1. Let f(x) = e−x − sin(x). Results of bisection iterates in finding the
first root of f in the interval [0, 1], with a tolerance ε = 0.5 × 10−5 (6
significant figures rounded) are given in Table 2.2. The bisection method
took 20 iterations to reach a precision of 6. The 21st was needed to meet
the termination condition.

2. Let f(x) = x4− x3− x− 1. Search for the root of f in the interval [0, 3]
with ε = 0.5 × 10−4 (5 significant figures rounded). The results of the
bisection iterates are given in Table 2.3.

Table 2.4 illustrates the convergence of the sequence of intervals
{(an, bn)|n = 1, 2, ..., 10}, generated by the bisection method for the func-
tion f(x) = ln(1 + x) − 1

1+x , as proved in Theorem 2.1. Computations are
carried out up to 3 significant figures. To conclude, the bisection is a multi-
step method that, although conceptually clear and simple, has significant
drawbacks since, as theory and practice indicate, it is a slowly convergent
method. However it globally converges to the searched solution and can be
used as a starter to more efficient locally convergent methods, notably both
the Newton’s and secant methods.

2.4 Newton’s Method

Newton’s (or Newton-Raphson’s) method is one of the most power-
ful numerical methods for solving non-linear equations. It is also referred to
as the tangent method, as it consists in constructing a sequence of num-
bers {rn|rn ∈ (a, b)∀n ≥ 1}, obtained by intersecting tangents to the curve
y = f(x) at the sequence of points {(rn−1, f(rn−1))|n ≥ 1} with the x-axis.

© 2014 by Taylor & Francis Group, LLC

Finding Roots of Real Single-Valued Functions 59

n an bn rn f(an)× f(bn)
0 0 1 0.5 +
1 0.5 1 0.75 +
2 0.75 1 0.875 -
3 0.75 0.875 0.813 -
4 0.75 0.813 0.782 -
5 0.75 0.782 0.766 -
6 0.75 0.766 0.758 +
7 0.758 0.766 0.762 +
8 0.762 0.766 0.764 -
9 0.762 0.764 0.763 +

10 0.763 0.764 0.763

TABLE 2.4: Convergence of the intervals (an, bn) to the positive root of
f(x) = ln(1 + x)− 1

1+x

Constructing such tangents and such sequences requires additional assump-
tions to (2.2)-(2.5) as derived hereafter.
To start, let r0 ∈ (a, b) in which the root is located, and let M0 = (r0, f(r0))
be the point on the curve

{(C)|y = f(x), a ≤ x ≤ b}.

Let also (T0) be the tangent to (C) at M0 with equation given by:

y = f ′(r0)(x− r0) + f(r0).

The intersection of (T0) with the x-axis is obtained for y = 0 and is given by:

r1 = r0 −
f(r0)

f ′(r0)
. (2.19)

To insure that r1 ∈ (a, b), r0 should be chosen “close enough” to r. Specifically,
since f(r) = 0, (2.19) is equivalent to:

r1 − r = r0 − r −
f(r0)− f(r)

f ′(r0)
(2.20)

Using Taylor’s expansion of f(r) about r0 up to first order, one has:

f(r) = f(r0)+f
′
(r0)(r−r0)+

1

2
f
′′
(c0)(r−r0)2, c0 = r0+θ0(r−r0), 0 < θ0 < 1,

thus leading to:

f(r)− f(r0)

f ′(r0)
= (r − r0) +

1

2

f
′′
(c0)

f ′(r0)
(r − r0)2, with c0 ∈ (a, b).

© 2014 by Taylor & Francis Group, LLC

60 Introduction to Numerical Analysis and Scientific Computing

Hence, imposing on f and on the interval (a, b) the following additional as-
sumptions:

f(x) ∈ C2(a, b), i.e., f(x), f
′
(x), f

′′
(x) are continuous on (a, b) (2.21)

f
′
(x) 6= 0 ∀x ∈ (a, b) (2.22)

one concludes from (2.20):

|r1 − r| =
1

2

|f ′′(c0)|
|f ′(r0)|

(r − r0)2 (2.23)

Based on these additional assumptions, we define also the positive constant:

C =
1

2

maxx∈(a,b) |f
′′
(x)|

minx∈(a,b) |f ′(x)|
. (2.24)

which will then lead to:
|r − r1| ≤ C|r − r0|2 (2.25)

This gives a preliminary “closeness” result of r1 with respect to the root r,
in terms of the “closeness” of r0, without however insuring yet the required
location of r1 in (a, b). In this view, letting now:

I0 = {x| |r − x| < 1

C
} ∩ (a, b) (2.26)

and selecting initially r0 in I0, leads to the required result as shown hereafter.

Lemma 2.1 If r0 ∈ I0 as defined in (2.26), then r1 ∈ I0 with

|r − r1| ≤ |r − r0| (2.27)

Proof. Let ei = C|r− ri|, i = 0, 1, where C verifies (2.24). Multiplying (2.25)
by C one obviously has:

e1 ≤ e2
0

moreover, since e0 < 1 and C > 0, the required result is reached.
Thus selecting r0 ∈ I0 and reaching r1 satisfying (2.27), the process can be
continued beyond that step. In fact one generates a sequence of Newton’s
iterates {rn|n ≥ 2} with rn ∈ (a, b)∀n, given by a formula generalizing
(2.19). Specifically, one has:

rn+1 = rn −
f(rn)

f ′(rn)
, n ≥ 0. (2.28)

with (rn+1, 0) being the intersection with the x-axis of the tangent to the
curve (C) at the point (rn, f(rn)), as indicated in Figure 2.3. Clearly, Newton’s
method is a one-step iteration rn+1 = g(rn), with the iteration function g(x)
given by:

g(x) = x− f(x)

f ′(x)
. (2.29)

We turn now to the analysis of the convergence of Newton’s method, i.e., the
convergence of Newton’s iterates {rn}n≥0.

© 2014 by Taylor & Francis Group, LLC

Finding Roots of Real Single-Valued Functions 61

FIGURE 2.3: Intersection with the x-axis of the tangent to (C) at (rn, f(rn))

Theorem 2.2 Let f(x) satisfy assumptions (2.2)-(2.5), in addition to (2.21)
and (2.22), then for r0 ∈ I0, with C as defined in (2.24), the sequence of
Newton’s iterates:

rn+1 = rn −
f(rn)

f ′(rn)
, n ≥ 0,

is such that:

1. rn ∈ I0, ∀n ≥ 0

2. limn→∞ rn = r

3. |r− rn+1| ≤ C|r− rn|2, meaning that Newton’s method is quadratic with
α = 2.

Proof. The proof of this theorem follows from arguments used to obtain
Lemma 2.1. In fact, one derives as for (2.25) that:

en+1 ≤ e2
n, ∀n ≥ 0. (2.30)

where ei = C|r − ri|, i = n, n+ 1.
Moreover, it can be easily proved by induction on n, that (2.30) in turn implies
that:

en ≤ (e0)2n ∀ n ≥ 1. (2.31)

As e0 < 1 then rn ∈ I0 with limn→∞ en = 0, proving parts 1 and 2 of the
lemma. In addition to these results, and as derived in (2.23) and (2.25), one
concludes that :

|rn+1 − r| =
1

2

|f ′′(cn)|
|f ′(rn)|

(r − rn)2 ≤ C|r − rn|2, (2.32)

© 2014 by Taylor & Francis Group, LLC

62 Introduction to Numerical Analysis and Scientific Computing

with cn = rn+ θn(r− rn), 0 < θn < 1. Referring to (2.8) that result obviously
implies that α = 2.

Note also that inequality (2.31) allows obtaining an estimate on the mini-
mum number of iterations needed to reach a computational tolerance εtol =
0.5× 101−p . Specifically, we prove now:

Corollary 2.2 If r0 ∈ I0, the minimum number of iterations needed to reach
εtol = 0.5× 101−p is given by:

n0 = d ln(1 +
(p− 1) ln(10) + ln(2)

| ln(e0)|
)/ ln(2)e.

Proof. Note that εtol is reached whenever n = n0 satisfies the following in-
equalities:

|r − rn0
|

|r − r0|
≤ 0.5× 101−p <

|r − rn|
|r − r0|

, ∀n < n0.

Since also |r−rn||r−r0| = en
e0

, ∀n ≥ 1, then from (2.31):

|r − rn0 |
|r − r0|

≤ (e0)2n0−1.

The sought for minimum number of iterations n0 would thus verify:

(e0)2n0−1 ≤ 0.5× 101−p < (e0)2n−1, ∀n < n0.

Since e0 < 1, this is equivalent to:

2n0 ≥ 1 +
(p− 1) ln(10) + ln(2)

| ln(e0)|
> 2n, n < n0.

This leads to n0 satifying:

n0 ≥
ln(1 + (p−1) ln(10)+ln(2)

| ln(e0)|)

ln(2)
> n0 − 1

and therefore:

n0 = d ln(1 +
(p− 1) ln(10) + ln(2)

| ln(e0)|
)/ ln(2)e,

which is the desired result.
To illustrate, assume e0 = 1

2 , then it results from this lemma that:

n0 = d ln(2 + (p− 1)
ln(10)

ln(2)
)/ ln(2)e.

Table 2.5 provides values of n0 relative to a precision p. Thus, one can assert

© 2014 by Taylor & Francis Group, LLC

Finding Roots of Real Single-Valued Functions 63

Precision p Iterations n0

7 4
10 5
16 6

TABLE 2.5: Estimate of the number of iterations as a function of the preci-
sion in Newton’s method

that Newton’s method is a locally and quadratically convergent method.
When a root r of a function f(x) is located in an interval (a, b), the first step is
to insure finding a sub-interval I0 ⊂ (a, b) containing r, in which |r− r0| ≤ 1

C ,
with the constant C given in (2.24).
A rule of thumb would be to select r0 after 1 or 2 applications of the bisection
method. Such a step would make sure the initial condition r0 is close “enough”
to r.
In the following algorithm, the initial choice is being selected after one bisec-
tion iteration. Note that Newton’s method requires the availability of the first
derivative f ′(x) of f(x). This is the “price” to pay in order to get a quadratic
convergence.

Algorithm 2.2 Newton’s Method

% Input f, df, a, b,Tol=0.5*10^(-p+1), kMAX

% Output: r is the sequence of approximations to the root up to Tol

% Find the first approximation by the Bisection rule

% The chosen stopping criteria is S=| r(n+1)-r(n) | / |r(n) |<= Tol

function r=myNewton(f,df,a,b,Tol,kmax)

r(1)=(a+b)/2;n=1; S =1;

while S >Tol & n< nMAX

F=f(r(n)); DF=df(r(n));

r(n+1)=r(n)-F/DF;

S = abs[r(n+1)-r(n)]/ abs[r(n)];

n=n+1;

end

if n>=kmax

disp (‘error no convergence’);

else

n=n-1;

end

The following example illustrates the general behavior of Newton’s method.

Example 2.3 Find the roots of f(x) = sin(x) − e−x in the interval (0, 2),
using Newton’s method.

© 2014 by Taylor & Francis Group, LLC

64 Introduction to Numerical Analysis and Scientific Computing

FIGURE 2.4: Finding a root of f(x) = sin(x)− e−x using Newton’s method

Iteration Iterate
0 1.75
1 1.8291987×102

2 1.8206468×102

3 1.8221346×102

4 1.8221237×102

... ...

TABLE 2.6: A case of a diverging Newton’s iteration

The graph of the function on that interval is shown in Figure 2.4.
Obviously, Newton’s method is not applicable when the initial choice of

the iteration r0 is selected randomly in the interval (0, 2). For example if r0

is chosen in the interval (1.5, 2), the generated sequence {rn} may not fall
in the interval (0, 2) and thus the method fails to converge, as is shown in
Table 2.6 resulting from the application of Newton’s algorithm with r0 = 1.75.
Obviously, the convergence is taking place to a root that is not in the interval
(0, 2). On the other hand, one application of the bisection method would start
the iteration with r0 = 1, leading to an efficiently convergent process as shown
in Table 2.7. Obviously, about 4 iterations would provide 10 significant figures,
a fifth one leading to 16 figures, i.e., a more than double precision answer.
However, there are cases, as in the first example below, where the convergence
of the method is not affected by the choice of the initial condition, whereby
Newton’s method converges unconditionally.

Example 2.4 The Square Root Function

© 2014 by Taylor & Francis Group, LLC

Finding Roots of Real Single-Valued Functions 65

Iteration Iterate
0 1.0
1 4.785277889803116×10−1

2 5.841570194114709×10−1

3 5.885251122073911×10−1

4 5.885327439585476×10−1

5 5.885327439818611×10−1

6 5.885327439818611×10−1

TABLE 2.7: A case of a converging Newton’s iteration

Using Newton’s method, we seek an approximation to r =
√
a, where a > 0.

Clearly, such r is the unique positive root of f(x) = x2 − a, with Newton’s
iterates satisfying the following identity:

rn+1 = rn −
f(rn)

f ′(rn)
≡ 1

2
(rn +

a

rn
), ∀n ≥ 0 (2.33)

(It is easy to check graphically that the sequence converges to
√
a for any

initial choice of r0 > 0).
Based on the equation above:

rn+1 − r =
1

2
(rn − 2r +

a

rn
)

Equivalently, since a = r2 :

rn+1 − r =
(rn − r)2

2rn
≥ 0 (2.34)

The following results can therefore be deduced:

1. rn ≥ r, ∀ n ≥ 1

2. The generated iterative sequence {rn} is a decreasing sequence, since:

rn+1 − rn = − f(rn)

f ′(rn)
= − (r2

n − r2)

2rn
≤ 0

based on the property 1 above.

3. The sequence {rn} converges to the root of f , i.e., limn→∞ rn = r, since
rewriting (2.34) as:

rn+1 − r =
rn − r

2
(1− r

rn
)

in turn by induction leads to:

rn+1 − r <
1

2
(rn − r) < ... <

1

2(n−1)
(r1 − r)

© 2014 by Taylor & Francis Group, LLC

66 Introduction to Numerical Analysis and Scientific Computing

4. The convergence is notably quadratic, since from (2.34) and for all n ≥ 0:

|rn+1 − r| = |
(rn − r)2

2rn
| < C|rn − r|2 where C =

1

2r

As for IEEE standard notations, note that since

a = m× 2e with 1 ≤ m < 2

then the square root function is such that:

√
: (m, e)→ (m′, e′) with

√
a = m′ × 2e

′

The normalized mantissa and exponent of
√
a are computed as follows:

1. If e = 2k, then m′ =
√
m with 1 ≤ m′ <

√
2 < 2, and e′ = k, i.e.,

√
: (m, e = 2k)→ (m′ =

√
m, e′ = k)

2. If e = 2k+ 1, then a = 2m× 22k and m′ =
√

2m with 1 <
√

2 ≤ m′ < 2,
and e′ = k, i.e.,

√
: (m, e = 2k + 1)→ (m′ =

√
2m, e′ = k)

In either case, Newton’s iteration in binary mode may start with r0 = 1.

The local character of convergence of Newton’s method is well illustrated
in the interesting case of the reciprocal function.

Example 2.5 The Reciprocal of a Positive Number

Assume a > 0. We seek an approximation to r = 1
a , where r is the unique

positive root of f(x) = a − 1
x . Obviously, Newton’s iterations satisfy the

following identity:
rn+1 = rn(2− arn), ∀ n ≥ 0 (2.35)

Choosing restrictively the initial condition r0 ∈ (0, 2/a) leads to an iterative
sequence {rn} where:

rn+1 > 0, whenever rn ∈ (0, 2/a) (2.36)

In such case, for all n ≥ 1, it is left as an exercise to prove that:

1. rn+1 − r = − (rn−r)2
r

2. The generated sequence is an increasing sequence

3. The sequence {rn} converges to the root of f , i.e., limn→∞ rn = r

4. Convergence of the sequence is quadratic.

© 2014 by Taylor & Francis Group, LLC

Finding Roots of Real Single-Valued Functions 67

Considering IEEE standard notations as for the square root function example,
if

a = m× 2e , with 1 < m < 2

then the inverse function is such that:

inv : (m, e)→ (m′, e′), with
1

a
= m′ × 2e

′

The normalized mantissa and exponent of 1/a are respectively:

m′ = 2/m and e′ = −e− 1

since 1
a = 1

m × 2−e or more adequately:

1

a
=

2

m
× 2−e−1, with 1 <

2

m
< 2

2.5 The Secant Method

Recall that Newton’s iteration satisfies formula (2.28):

rn+1 = rn −
f(rn)

f ′(rn)
where f ′(rn) = lim

h→0

f(rn + h)− f(rn)

h

One drawback of Newton’s method is the necessary availability of the deriva-
tive. In case such function is difficult to program, an alternative would be
to avoid the calculation of f ′(rn), and replace it by the backward divided
difference approximation to the derivative:

f ′(rn) ≈ [rn−1, rn] =
f(rn)− f(rn−1)

rn − rn−1

As indicated in Figure 2.5, obtaining rn+1 uses the secant to the curve y =
f(x) passing through the points (rn−1, f(rn−1)) and (rn, f(rn)), the equation
of which is:

y =
f(rn)− f(rn−1)

rn − rn−1
(x− rn) + f(rn)

The intersection of this secant line with the x-axis would provide the (n+ 1)-
iterate secant method formula:

rn+1 = rn −
f(rn)

[rn, rn−1]
≡ rn −

f(rn)(rn − rn−1)

f(rn)− f(rn−1)
, n ≥ 2 (2.37)

The secant method is a two-step method of the form rn+1 = g(rn, rn−1),

© 2014 by Taylor & Francis Group, LLC

68 Introduction to Numerical Analysis and Scientific Computing

FIGURE 2.5: Intersection with the x-axis of the secant passing by the points
(rn, f(rn)) and (rn−1, f(rn−1)) on (C)

its processing requiring selection of r0 and r1. Of course, if the method is
succeeding, the points rn will be approaching a zero of f , so f(rn) will be
converging to zero.
Practically, if a root r of the function f is located in the interval (a, b), one
would suggest applying twice the bisection method in order to implement
(2.37) as shown in the following algorithm.

Algorithm 2.3 Secant Method

% Input f, a, b,TOL, kMAX

% Find the first 2 approximations by the Bisection rule

function r=mySecant(f,a,b,TOL,kmax)

r(1)=(a+b)/2 ;

if f(a)*f(r(1)) < 0

r(2)=(r(1)+a)/2 ;

else

r(2)=(b+r(1))/2 ;

end

k=2; S = 1;

while S >TOL & k<=kMAX

d=(f(r(k))-f(r(k-1))/r(k)-r(k-1));

r(k+1)=r(k)-f(r(k))/d;

S = abs (r(k+1)-r(k)]) abs (r(k)) ;

k=k+1;

end

if n>=kmax

© 2014 by Taylor & Francis Group, LLC

Finding Roots of Real Single-Valued Functions 69

disp (‘error no convergence’);

else

n=n-1;

end

The advantages of the secant method relative to the tangent method are that
(after the first step) only one function evaluation is required per step (in con-
trast to Newton’s iteration which requires two) and that it is almost as rapidly
convergent. It can be shown that under the same assumptions as those of
Theorem 2.2, the basic secant method is superlinear and has a local char-
acter of convergence.

Theorem 2.3 Under the hypothesis of Theorem 2.2 and for r0 and r1 ∈ I0
(defined in (2.26)), then one has:

1. limn→∞ rn = r,

2. There exists a sequence {tn|, n ≥ 0} such that:

|r − rn| ≤ tn, with tn = O(tn−1)γ and γ =
1 +
√

5

2
(2.38)

i.e the order of convergence of the secant method is the Golden
Number γ ≈ 1.618034 in the sense of (2.7).

Proof. Starting with the following identity (Theorem 4.5):

f(r) = f(rn)+[rn−1, rn](r−rn)+
1

2
(r−rn)(r−rn−1)f

′′
(c) ; c = rn+θ(r−rn), 0 < θ < 1

where f(r) = 0, one deduces:

rn −
f(rn)

[rn−1, rn]
= r +

1

2
(r − rn)(r − rn−1)

f
′′
(c)

[rn−1, rn]

Since [rn−1, rn] = f ′(c1), then under the assumptions of Theorem 2.2, one
concludes that:

|r − rn| ≤ C|r − rn−1|.|r − rn−2|, ∀n ≥ 2 (2.39)

with C as defined in (2.24). Again, let ei = C|r − ri|, i = n − 2, n − 1, then
(2.39) is equivalent to:

en ≤ en−1.en−2, ∀n ≥ 2. (2.40)

With the assumption that the initial conditions r0, r1 are selected so that:

δ = max(e0, e1) < 1 (2.41)

© 2014 by Taylor & Francis Group, LLC

70 Introduction to Numerical Analysis and Scientific Computing

one obviously concludes that e2 ≤ e0e1 < δ2 and that e3 ≤ e1e2 < δ3. Let
{fn|n ≥ 0} be a Fibonacci sequence defined by:

f0 = f1 = 1, fn = fn−1 + fn−2, n ≥ 2.

It is well known that the solution of this second order difference equation is
given by:

fn =
1√
5

((
1 +
√

5

2
)n+1−(

1−
√

5

2
)n+1) =

1√
5

((
1 +
√

5

2
)n+1+(−1)n+1(

√
5− 1

2
)n+1).

Let γ = 1+
√

5
2 be the Golden Number, then:

fn =
1√
5

(γn+1 + (− 1

γ
)n+1)

As n → ∞, the first term of fn tends to +∞ while the second tends to 0 so
that fn = O(γn+1).
Based on the choice of r0 and r1 in I0, e0 < δf0 and e1 < δf1 . By induction,
assuming that ek < δfk , ∀k ≤ n− 1, then using (2.40), one has:

en ≤ en−1en−2 < δfn−1+fn−2 = δfn , ∀n ≥ 2. (2.42)

As δ < 1, this last inequality proves the first part of the theorem, i.e., that

lim
n→∞

en = 0.

As for the second part of the theorem, given that:

|r − rn| ≤
1

C
en < tn =

1

C
δfn ,

then:
tn
tγn−1

= Cγ−1δfn−γfn−1 .

Note that

fn − γfn−1 =
1√
5

(γn+1 + (− 1

γ
)n+1 − γn+1 − γ(− 1

γ
)n) =

2√
5

(− 1

γ
)n+1.

Hence fn − γfn−1 → 0 and therefore there exists a constant K such that:

tn ≤ K(tn−1)γ .

To illustrate the secant method, we consider the following example.

Example 2.6 Approximate the root of f(x) = sin(x)− e−x up to 10 decimal
figures, in the interval (0, 2) using the secant method.

© 2014 by Taylor & Francis Group, LLC

Finding Roots of Real Single-Valued Functions 71

Iteration Iterate
0 1.0
1 1.5000000000
2 0.21271008648
3 0.77325832517
4 0.61403684201
5 0.58643504642
6 0.58855440366
7 0.58853274398
8 0.58853274398

TABLE 2.8: Application of the secant method for the first root of f(x) =
sin(x)− e−x

Results of this process are given in Table 2.8. Besides computing the initial
conditions, the secant method requires about 6 iterations to reach a precision
p = 10, that is 2 more than Newton’s method.

Comparisons between the convergence of both the Newton and secant methods
can be further made, using the inequalities (2.31) and (2.42), as en = C|r−rn|
satisfies respectively:

1. en ≤ δ2n in Newton’s method and

2. en ≤ δfn in the secant method.

with δ = e0 = C|r − r0|. Thus

|r − rn|
|r − r0|

=
en
e0

=≤ δ2n−1

for Newton’s method and

|r − rn|
|r − r0|

=
en
e0

=≤ δfn−1

for the secant method.
In the same way that this was done for the preceding methods (Corollaries
2.1 and 2.2), one can also derive the minimum number of iterations needed
theoretically to reach requested precisions using the secant method. How-
ever, in this chapter, in order to confirm that Newton’s method is faster, we
will only consider for example the specific case of δ = 1

2 , seeking the mini-

mum n0 for which |r−rn||r−r0| ≤ 2−p, (i.e a precision p in a floating-point system

F(2, p, Emin, Emax)). Straightforwardly, it can be shown that such n0 satisfies:

2n
(1)
0 ≥ 1 + p > 2n

(1)
0 −1

© 2014 by Taylor & Francis Group, LLC

72 Introduction to Numerical Analysis and Scientific Computing

p n
(1)
0 n

(2)
0

10 4 6
24 (IEEE-single) 5 8
53 (IEEE-double) 6 9

TABLE 2.9: Comparing Newton’s and secant methods for precisions p =
10, 24, 53

for Newton’s method and

f
n
(2)
0
≥ 1 + p > f

n
(2)
0 −1

for the secant method. Comparisons of these estimates to p = 10, 24, 53 are
shown in Table 2.9. Thus although Newton’s method is faster, it takes at most
about 2 to 3 more iterations for the secant method to reach the same precision.

© 2014 by Taylor & Francis Group, LLC

Finding Roots of Real Single-Valued Functions 73

2.6 Exercises

The Bisection Method

1. Locate all the roots of f , then approximate each one of them up to 3
decimal figures using the bisection method.

(a) f(x) = x− 2 sinx

(b) f(x) = x3 − 2 sinx

(c) f(x) = ex − x2 + 4x+ 3

(d) f(x) = x3 − 5x− x2

2. Show that the following equations have infinitely many roots by graphi-
cal methods. Use the bisection method to determine the smallest positive
value up to 4 decimal figures.

(a) tanx = x

(b) sinx = e−x

(c) cosx = e−x

(d) ln(x+ 1) = tan(2x)

3. The following functions have a unique root in the interval [1, 2]. Use
the Bisection method to approximate that root up to 4 decimal figures.
Compare the number of iterations used with the “theoretical” estimate.

(a) f(x) = x3 − ex

(b) f(x) = x2 − 4x+ 4− lnx

(c) f(x) = x3 + 4x2 − 10

(d) f(x) = x4 − x3 − x− 1

(e) f(x) = x5 − x3 + 3

(f) f(x) = e−x − cosx

(g) f(x) = ln(1 + x)− 1
x+1

4. The following functions have a unique root in the interval [0, 1]. Use
the bisection method to approximate that root up to 5 decimal figures.
Compare the number of iterations needed to reach that precision with
the predictable “theoretical” value.

(a) f(x) = e−x − 3x

(b) f(x) = ex − 2

(c) f(x) = e−x − x2

© 2014 by Taylor & Francis Group, LLC

74 Introduction to Numerical Analysis and Scientific Computing

(d) f(x) = cosx− x
(e) f(x) = cosx−

√
x

(f) f(x) = ex − 3x

(g) f(x) = x− 2−x

(h) f(x) = 2x+ 3 cosx− ex

5. Prove that the function f(x) = ln(1 − x) − ex has a unique negative
root. Use the bisection method to calculate the first four iterations.

6. Prove that the function f(x) = ex − 3x has a unique positive root. Use
the bisection method to calculate the first four iterations.

7. The bisection method generates a sequence of intervals {[a0, b0], [a1, b1], ...}.
Prove or disprove the following estimates.

(a) |r − an| ≤ 2|r − bn|
(b) |r − bn| ≤ 2−n(b0 − a0)

(c) rn+1 = an+rn
2

(d) rn+1 = bn+rn
2

Newton’s and the Secant Methods

8. Use three iterations of Newton’s method to compute the root of the
function f(x) = e−x − cosx that is nearest to π/2.

9. Use three iterations of Newton’s method to compute the root of the
function f(x) = x5 − x3 − 3 that is nearest to 1.

10. The polynomial p(x) = x4 + 2x3 − 7x2 + 3 has 2 positive roots. Find
them by Newton’s method, correct to four significant figures.

11. Use Newton’s method to compute ln 3 up to five decimal figures.

12. Approximate ±
√
e up to 7 decimal figures using Newton’s method.

13. Compute the first four iterations using Newton’s method to find the
negative root of the function f(x) = x− e/x.

14. Use Newton’s method to approximate the root of the following func-
tions up to 5 decimal figures, located in the interval [0, 1]. Compare the
number of iterations used to reach that precision with the predictable
“theoretical” value.

(a) f(x) = ex − 3x

(b) f(x) = x− 2−x

15. To approximate the reciprocal of 3, i.e., r = 1
3 , using Newton’s method:

© 2014 by Taylor & Francis Group, LLC

Finding Roots of Real Single-Valued Functions 75

(a) Define some appropriate non-polynomial function that leads to an
iterative formula not dividing by the iterate. Specify the restrictions
on the initial condition if there are any.

(b) Choose two different values for the initial condition to illustrate the
local character of convergence of the method.

16. Based on Newton’s method, approximate the reciprocal of the square
root of a positive number R, i.e., 1√

R
, using first a polynomial func-

tion, and secondly a non polynomial function. Determine the necessary
restrictions on the initial conditions, if there are any.

17. To approximate the negative reciprocal of the square root of 7, i.e.,
r = −1√

7
, using Newton’s method:

(a) Define some appropriate non-polynomial function that leads to an
iterative formula not dividing by the iterate. Specify the restrictions
on the initial condition if there are any.

(b) Use Newton’s method to approximate r = −1√
7

up to 4 decimal

figures.

18. Approximate
√

2 up to 7 decimal figures using Newton’s method.

19. The number
√
R (R > 0) is a zero of the functions listed below. Based

on Newton’s method, determine the iterative formulae for each of the
functions that compute

√
R. Specify any necessary restriction on the

choice of the initial condition, if there is any.

(a) a(x) = x2 −R
(b) b(x) = 1/x2 − 1/R

(c) c(x) = x−R/x
(d) d(x) = 1−R/x2

(e) e(x) = 1/x− x/R
(f) f(x) = 1− x2/R

20. Based on Newton’s method , determine an iterative sequence that con-
verges to π. Compute π up to 3 decimal figures.

21. Let f(x) = x3 − 5x+ 3.

(a) Locate all the roots of f .

(b) Use successively the bisection and Newton’s methods to approxi-
mate the largest root of f correct to 3 decimal places.

22. To approximate the cubic root of a positive number a, i.e., r = a
1
3 ,

where 1 < a ≤ 2, using Newton’s method:

© 2014 by Taylor & Francis Group, LLC

76 Introduction to Numerical Analysis and Scientific Computing

(a) Define some appropriate polynomial function f(x) with unique root

r = a
1
3 , then write the formula of Newton’s iterative sequence {rn}.

(b) Assume that, for r0 = 2, the sequence {rn} is decreasing and sat-

isfies: a
1
3 = r < ... < rn+1 < rn < rn−1 < ... < r1 < r0 = 2.

Prove then that: |rn+1 − r| ≤ (rn − r)2 for all n ≥ 0.

(c) Prove by recurrence that: |r − rn| ≤ |r − r0|2
n

, for all n ≥ 0

(d) Assuming |r0 − r| ≤ 1
2 . Estimate the least integer n0 such that

|rn0 − r| ≤ (1
2)32.

23. Let p(x) = c2x
2 + c1x+ c0 be a quadratic polynomial with one of its

roots r located in an interval (a, b), with:

min
a≤x≤b

|p
′
(x)| ≥ d > 0 and

2d

|c2|
≤ (b− a).

Using Newton’s method with r0 sufficiently close to r:

(a) Show that if rn ∈ (a, b) then |rn+1 − r| ≤ C|rn − r|2,
where C = |c2|

d .

(b) Let en = C|r − rn|. Show that if rn ∈ (a, b) then en+1 ≤ e2
n. Give

also the condition on |r0 − r| that makes e0 < 1, and therefore
en < 1 for all n.

(c) Assume |r0− r| = 1
2C . Show by recurrence that en ≤ (e0)(2n), then

estimate the smallest value np of n, so that:

|rnp − r|
|r0 − r|

≤ 2−p.

24. Calculate an approximate value for 43/4 using 3 steps of the secant
method.

25. Use three iterations of the secant method to approximate the unique
root of f(x) = x3 − 2x+ 2.

26. Show that the iterative formula for the secant method can also be written

xn+1 =
xn−1f(xn)− xnf(xn−1)

f(xn)− f(xn−1)

Compare it with the standard formula. Which one is more appropriate
to use in the algorithm of the secant method?

27. Use the secant method to approximate the root of the following func-
tions up to 5 decimal figures, located in the interval [0, 1]. Compare the
number of iterations used to reach that precision with the number of
iterations obtained in exercise 14.

© 2014 by Taylor & Francis Group, LLC

Finding Roots of Real Single-Valued Functions 77

(a) f(x) = ex − 3x

(b) f(x) = x− 2−x

(c) f(x) = −3x+ 2 cosx− ex

© 2014 by Taylor & Francis Group, LLC

78 Introduction to Numerical Analysis and Scientific Computing

2.7 Computer Projects

Exercise 1: Newton’s Method
The aim of this exercise is to approximate π by computing the root of f(x) =
sin(x) in the interval (3, 4), based on Newton’s method. For that purpose:

1. Write two MATLAB functions:
function[sinx]=mysin(x,p)

function[cosx]=mycos(x,p)

With inputs:

• a variable x representing some angle in radians

• a precision p

Then using Taylor’s series expansion, these functions should compute re-
spectively the sin and cos of x, up to a tolerance Tol = 0.5∗10(−p+1), and
output respectively the values of sin(x) or cos(x) in F(10, p,−20,+20).
Hint: First compute sin(x) and cos(x), then use num2str(. , p)
Note that:
sin(x) = x− x3

3! + x5

5! −
x7

7! ...

cos(x) = 1− x2

2! + x4

4! −
x6

6! + ...

PS. Do not use the MATLAB built-in function for the factorials.
Test each of the functions above for x = π/3, π/4 and π/6 with p = 14
and save your results in a Word document.

2. Write a MATLAB

function [root,k]= myNewton(f,df,a,b,p,kmax)

That takes as inputs:

• a function f and its derivative df (as function handles)

• 2 real numbers a and b, where (a, b) is the interval locating the root
of f ,

• a precision p

• a maximum number of iterations kmax

Then, based on Newton’s method, this function should output:

• root: the approximation to the root of f up to p decimal figures
Hint: first compute root, then use num2str(root , p)

• k: the number of iterations used to reach the required precision p,
whereas:
Tol = 0.5 ∗ 10(−p+1) is the relative error to be reached when com-
puting the root.

© 2014 by Taylor & Francis Group, LLC

Finding Roots of Real Single-Valued Functions 79

Test your function for 2 different functions f and save your results in a
word document.

3. Write a MATLAB

function [mypi, errpi, k]= mypiNewton(p, kmax)

That takes as inputs p and kmax as defined in the previous question.
Applying Newton’s method on the interval (3, 4) and using the func-
tions mysin and mycos programmed in part 1, this function should out-
put:

• mypi: the approximation to π up to p decimal figures

• errpi: the absolute error |mypi−π| where π is considered in double
precision

• k: the number of iterations used in Newton’s method to reach the
precision p

Hint: Note that after calling the functions myNewton, mysin, mycos,
their outputs should be converted back to numbers using the command
str2num(.)

Test this function for kmax = 20 and successively for p = 2, 3, 7, 10, 15.
Save your numerical results in a Word document.

Exercise 2 : Newton’s Method on Polynomials
Let p = pn(x) = an+1x

n+anx
n−1 + ...+a2x+a1, be a polynomial of degree n

and let a = [a1, a2, ..., an+1] be the corresponding coefficients row vector. The
objective of this exercise is to approximate the roots of p included in some
interval [−int,+int], using Newton’s method. For this purpose, starting with
a set of equally-spaced points on [−int,+int], given by the MATLAB instruction:

x = −int : incr : +int;

and selecting incr appropriately (incr=0.5 in this exercise), use the following
function:

function [S] = SignPoly(a,x)

N=length(a); m=length(x); S=[];

for j=1:m

p=a(N);

for i=N-1:-1:1

p=p*x(j) + a(i);

end

S(j)=sign(p);

end

This function takes as inputs the vector a = [a1, a2, ..., an+1] of coefficients
of p, and the vector x, then computes p(xi) at all components of the vector x,
using nested polynomial evaluation. The required output is a vector S whose
components represent the signs of p(xi)∀ i = 1 : length(x)

© 2014 by Taylor & Francis Group, LLC

80 Introduction to Numerical Analysis and Scientific Computing

1. Write a MATLAB

function [A,B]=LocateRoots(a, x)

With the same inputs as SignPoly and outputs 2 vectors A and B of
equal length m ≤ length(x), such that for each k, 1 ≤ k ≤ m, there
exists a root r of p, with A(k) < r < B(k) .
Hint: LocateRoots should call the function SignPoly.
A pseudo-code for LocateRoots is as follows.

A=[];B=[];

for k=1: length(x)-1

if S(k) * S(k+1) <0

%then there exists a root r with a=x(k) < r < x(k+1)=b,

% where a and b are components of A and B respectively

end

end

2. Write a MATLAB

function R=PolyEvaluate(a,r)

That takes as inputs the vector a of coefficients of p and a real number

r and computes the ratio R = p(r)
p′(r) .

Hint: Use one “for loop” only and nested polynomial evaluation to com-

pute first the ratio R1 = p(r)
r.p′(r) ,

3. Write a MATLAB

function [roots]=PolyNewton(a,A,B,pr,kmax)

That takes as inputs the vectors a,A and B as introduced in parts 1
and 2, an integer pr representing some precision and kmax a maximum
number of iterations as a safeguard. Based on Newton’s method, this
function should output the vector “roots,” whose components are the
roots of p computed up to “pr” decimal figures.
Hint: Compute first the vector “roots,” then use the MATLAB function
num2str(roots, pr) to round all roots of p(.) up to pr decimals. (tol =
0.5 ∗ 101−pr).

4. Test each one of the 3 functions above on the following Hermite poly-
nomials of degree n ≥ 3 and save the results in a separate document.
(Compare the computed roots with those listed in the table.)
Note the following properties of all Hermite polynomials:

• The roots are irrational numbers that are symmetric with respect
to the origin.

• The value “zero” is a root of all odd orders Hermite polynomials.

• To obtain higher order Hermite polynomials, use the relation:

Hn+1(x) = 2xHn(x)− 2nHn−1(x)

© 2014 by Taylor & Francis Group, LLC

Finding Roots of Real Single-Valued Functions 81

n Hn(x) Approximate
non-negative roots

0 1 ...
1 2x 0
2 4x2 − 2 0.707
3 8x3 − 12x 0 ; 1.224
4 16x4 − 48x2 + 12 0.524 ; 1.650
5 32x5 − 160x3 + 120x 0 ; 0.958 ; 2.020
6 64x6 − 480x4 + 720x2 − 120 0.436 ; 1.335 ; 2.350
7 128x7 − 1344x5 + 3360x3 − 1680x 0 ; 0.816 ; 1.673 ; 2.651
8 256x8 − 3584x6 + 13440x4 − 13440x2 + 1680 0.381 ; 1.157 ; 1.981 2.930
9 512x9 − 9216x7 + 48384x5 − 80640x3 + 30240x 0 ; 0.723 ; 1.468 ; 2.266 ; 3.190
10 1024x10 − 23040x8 + 161280x6 − 403200x4 0.342 ; 1.036 ; 1.756 ; 2.532 ; 3.436

+302400x2 − 30240

Exercise 3 : Testing the Order of Convergence of Root-Finding
methods
The order of convergence of a “root finding” method is α, if:

|rn − r| ≈ Cn|rn−1 − r|α for n ≥ 2

the constants Cn being bounded. To experiment numerically the value of α,
the above equality is transformed to

ln |rn − r| ≈ lnCn + α ln |rn−1 − r|

Letting An = ln |rn − r| and C1,n = lnCn, then

An ≈ C1,n + αAn−1

Equivalently:
An
An−1

≈ C1,n

An−1
+ α

Since limn→∞ |rn − r| = 0, then limn→∞An = −∞, implying that for “rela-
tively large” values of n

αn =
An
An−1

≈ α

meaning that the sequence {αn = An
An−1

} provides an approximation to α,

with the values of αn obtained through this numerical process oscillating
about the theroetical value of α.
(Note that respectively for the secant, bisection and Newton’s methods, α =
1.6, 1 and 2.)

1. Write a MATLAB

function [k,R, AbsErr,alphan]=SecantConverge(f,a,b,Tol,Kmax,r)

That takes as inputs:

© 2014 by Taylor & Francis Group, LLC

82 Introduction to Numerical Analysis and Scientific Computing

• a function f having a known root r, located in some interval (a,b)

• a tolerance Tol = 1
2101−p that is the relative error bound, with

p ≥ 5

• the maximum number kmax of iterations to be used

and returns:

• the number k of iterations needed to reach the precision p

• a column vector R whose components are the successive iterates
{rn} approximating the root of f(.) by the secant method.

• a column vector AbsErr= |R− r| whose components are the abso-
lute errors |rn − r|

• a column vector alphan, whose components are αn = ln |(rn−r)|
ln |(rn−1−r|

2. Write a MATLAB

function[k,R,AbsErr,alphan]=BisectConverge(f,a,b,Tol,Kmax,r)

Which inputs and outputs are similar to those defined for the secant
method in part 1.

3. Write a MATLAB

function [k,R,AbsErr,alphan]=NewtonConverge(f,df,a,b,Tol,Kmax,r)

Which inputs and outputs are similar to those defined in part 1. (df is
the derivative function of f.)

4. Test each of the 3 functions above for 2 different test cases and display
your results in a table of the form:

R(n) AbsErr(n) alphan(n)

5. Use the MATLAB plot function for plotting alphan(n) as a function n

(the nth iteration). Plot also on the same graph (with a different color),
a horizontal line representing the theoretical value α.
Save your numerical results obtained in part 3 and your graphs in a
Word document.
Suggested interesting functions:

(a) f(x) = lnx− 1, whose root is the irrational number e

(b) f(x): Polynomial functions of degree >= 4

(c) Approximate square or cubic roots

(d) Approximate reciprocals of square or cubic roots

(e) f(x) = x2 − x− 1, whose positive root is the “golden number”

© 2014 by Taylor & Francis Group, LLC

Chapter 3

Solving Systems of Linear Equations
by Gaussian Elimination

3.1 Mathematical Preliminaries . 83
3.2 Computer Storage and Data Structures for Matrices . 85
3.3 Back Substitution for Upper Triangular Systems . 86
3.4 Gauss Reduction . 89

3.4.1 Naive Gauss Elimination . 91
3.4.2 Partial Pivoting Strategies: Unscaled (Simple) and Scaled Partial
Pivoting . 93

3.5 LU Decomposition . 102
3.5.1 Computing the Determinant of a Matrix . 104
3.5.2 Computing the Inverse of A . 105
3.5.3 Solving Linear Systems Using LU Factorization 107

3.6 Exercises . 108
3.7 Computer Projects . 114

3.1 Mathematical Preliminaries

This chapter assumes basic knowledge of linear algebra, in particular Ele-
mentary Matrix Algebra as one can find these notions in a multitude of text-
books such as [32]. Thus, we consider the problem of computing the solution
of a system of n linear equations in n unknowns. The scalar form of that
system is as follows:

(S)


a11x1 +a12x2 +... +... +a1nxn = b1
a21x1 +a22x2 +... +... +a2nxn = b2
...

an1x1 +an2x2 +... +... +annxn = bn

Written in matrix form, (S) is equivalent to:

Ax = b, (3.1)

where the coefficient square matrix A ∈ Rn,n, and the column vectors x, b ∈
Rn,1 ∼= Rn. Specifically,

A =


a11 a12 a1n

a21 a22 a2n

...
an1 an2 ann


83

© 2014 by Taylor & Francis Group, LLC

84 Introduction to Numerical Analysis and Scientific Computing

x =


x1

x2

...
xn

 and b =


b1
b2
...
bn

 .

We assume that the basic linear algebra property for systems of linear equa-
tions like (3.1) are satisfied. Specifically:

Proposition 3.1 The following statements are equivalent:

1. System (3.1) has a unique solution.

2. det(A) 6= 0.

3. A is invertible.

Our objective is to present the basic ideas of a linear system solver which
consists of two main procedures allowing to solve (3.1) with the least number
of floating point arithmetic operations (flops).

1. The first, referred to as Gauss elimination (or reduction) reduces
(3.1) into an equivalent system of linear equations, which matrix is up-
per triangular. Specifically one shows in section 4 that

Ax = b⇐⇒ Ux = c,

where c ∈ Rn and U ∈ Rn,n is given by:

U =


u11 u12 u1n

0 u22 u2n

...
0 0 ... un−1,n−1 un−1,n

0 0 ... 0 unn

 .

Thus, uij = 0 for i > j. Consequently, one observes that A is invertible
if and only if

Πn
i=1uii = u11u22...unn 6= 0, i.e., uii 6= 0 ∀i.

2. The second procedure consists in solving by back substitution the
upper triangular system

Ux = c. (3.2)

A picture that describes the two steps of the linear solver is:

Input A, b→ Gauss Reduction → Output U, c→ Back Substitution → Output x

© 2014 by Taylor & Francis Group, LLC

Solving Systems of Linear Equations by Gaussian Elimination 85

k n = 2k N = n× (n+ 1) ≈in Megabytes
IEEE single precision IEEE double precision

3 8 72 2.7× 10−4 5.5× 10−4

6 64 4160 1.6× 10−2 3.2× 10−2

8 256 65792 0.25 0.5
10 1024 1049600 4 8

TABLE 3.1: Computer memory requirements for matrix storage

Our plan in this chapter is as follows. We start in Section 3.2 by discussing
issues related to computer storage. This is followed in Section 3.3 by discussing
the back substitution procedure that solves upper triangular systems, such as
(3.2). Finally in Section 3.4 we present various versions of Gauss reduction,
the simplest of which is Naive Gaussian elimination.
Extensive details regarding Numerical Solutions of Linear Equations can be
found at a basic level in [31] and at a higher level in [16].

3.2 Computer Storage and Data Structures for Matrices

The data storage for A and b is through one data structure: the aug-
mented matrix AG ∈ Rn,n+1, given by:

AG =


a11 a12 a1n b1
a21 a22 a2n b2
...
an1 an2 ann bn


We generally assume that the matrix A is a full matrix, that is, “most of its
elements are non-zero.” Storing the augmented matrix AG for a full matrix
in its standard form, would then require N = n× (n+ 1) words of computer
memory. If one uses single precision, 4N bytes would be necessary, while using
double precision would necessitate 8N bytes for that storage.
For instance, when the matrix size is n = 2k, the computer memory for double
precision computation should exceed N = 8× 2k(2k + 1) ≈ O(22k+3) bytes.
Table 3.1 illustrates some magnitudes of memory requirements.

Practically, computer storage is usually one-dimensional. As a result, matrix
elements are either stored column-wise (as in MATLAB), or row-wise. In the
case where the elements of the augmented matrix AG are contiguously stored

© 2014 by Taylor & Francis Group, LLC

86 Introduction to Numerical Analysis and Scientific Computing

by columns, this storage would obey the following sequential pattern:

| a11 a21 ... an1︸ ︷︷ ︸
column 1

| a12 ... an2︸ ︷︷ ︸
column 2

| ...| a1n ... ann︸ ︷︷ ︸
column n

| b1 b2 ..., bn︸ ︷︷ ︸
column n+1

|

while if stored by rows, the storage pattern for the augmented matrix elements
becomes:

| a11 a12 ... a1n b1︸ ︷︷ ︸
line 1

| a21 ... a2n b2︸ ︷︷ ︸
line 2

| ...| an1 ... ann bn︸ ︷︷ ︸
line n

|

Once Gauss reduction has been applied to the original system Ax = b, the
resulting upper triangular system Ux = c would necessitate the storage of the
upper triangular matrix U and the right hand side vector c. Obviously, the
augmented matrix for this system is given by:

UG =


u11 u12 u1n c1
0 u22 u2n c2
...
0 0 unn cn


Since by default, the lower part of the matrix U consists of zeros, this part
of the storage shall not be waisted but used for other purposes, particularly
that of storing the multiplying factors, which are essential parameters to
carry out Gauss elimination procedure. Hence, at this stage we may consider
the data structure UG whether stored by rows or by columns as consisting of
the elements of U and c and unused storage space:

UG =


u11 u12 u1n c1

unused u22 u2n c2
...

unused unused unn cn



We turn now to the back substitution procedure.

3.3 Back Substitution for Upper Triangular Systems

Although this procedure comes after the completion of the Gauss reduction
step, we shall deal with it from the start. It indeed provides the importance
of this global approach.
Considering (3.2) in its scalar form, with all diagonal elements uii 6= 0, gives:

© 2014 by Taylor & Francis Group, LLC

Solving Systems of Linear Equations by Gaussian Elimination 87
u11 u12 u1n

0 u22 u2n

...
0 0 ... un−1,n−1 un−1,n

0 0 ... 0 unn




x1

x2

...
xn−1

xn

 =


c1
c2
...
cn−1

cn



Solving this system by the back substitution procedure reduces such pro-
cedure to solving n equations, each one in one unknown only.
We give two versions of the back substitution process: the first one is col-
umn oriented, while the second one is row oriented. We then evaluate and
compare the computational complexity of each version.

1. Column-version: The two main steps are as follows:

(a) Starting with j = n : −1 : 1, solve the last equation for xj , where
xj = cj/uj,j .

(b) In all rows above, that is from row i = 1 : (j−1), compute the new
right hand side vector that results by “shifting” the last column of
the matrix (terms in xj) to the right hand side. For example when
j = n, the new system to solve at this step is as follows:


u11 u12 u1,n−1

0 u22 u2,n−1

...
0 0 ... 0 un−1,n−1




x1

x2

...
xn−1

 =


c1 − u1nxn
c2 − u2nxn

...
cn−1 − un−1,nxn



This process is repeated till the first row is reached, where:

u11x1 = c1 − u1,nxn − u1,n−1xn−1 − ...− u12x2

leading thus to x1 = (c1 − u1,nxn − u1,n−1xn−1 − ...− u12x2)/u11.

The corresponding algorithm is implemented as follows:

Algorithm 3.1 Column Back Substitution

function x = ColBackSubstitution(U,c)

% Input: U an upper-triangular invertible matrix, and

% c a column vector

% Output: solution vector x of system Ux = c

% Storage is column oriented

n=length(c) ;

for j=n:-1:1

© 2014 by Taylor & Francis Group, LLC

88 Introduction to Numerical Analysis and Scientific Computing

x(j)=c(j)/U(j,j);

for i=1: j-1

c(i)=c(i) - U(i,j) * x(j);

end

end

The number of floating point operations used in this algorithm is n2,
and is computed as follows:

• For every j, (j = 1 : n): 1 division is needed to compute x(j) adding
up therefore to a total of n flops.

• For every j, (j = 1 : n) and for every i, (i = 1 : j − 1), to compute
each modified right hand side term c(i): 1 addition + 1 multiplica-
tion are used, that sum up to a total of:

n∑
j=1

j−1∑
i=1

2 =

n∑
j=1

2[(j − 1)− 1 + 1] = 2(1+2+...+(n−1)) = n(n−1)

As for the 2nd version, the rows are successively and completely solved
for one unknown, starting with the last one (i = n).

2. Row-version:

Algorithm 3.2 Row Back Substitution

% Input and Output as in "ColBackSubstitution" above

% Storage is row oriented

function x = RowBackSubstitution(U,c)

n=length(c);

x(n)=c(n)/U(n,n);

for i=n-1:-1:1

for j=i+1:n

c(i)=c(i)-U(i,j) * x(j);

end

x(i)=c(i)/U(i,i);

end

It is easy to verify in that case that the total number of flops used remains
equal to n2 .

© 2014 by Taylor & Francis Group, LLC

Solving Systems of Linear Equations by Gaussian Elimination 89

3.4 Gauss Reduction

Our starting point is to assume “ideal mathematical conditions” allowing
one to carry the reduction without any safeguard. Before setting formally
these assumptions, we work out the following example:

Example 3.1 Consider the reduction of the following system into upper tri-
angular form : 

x1 −x2 +2x3 +x4 = 1
3x1 +2x2 +x3 +4x4 = 1
5x1 8x2 +6x3 +3x4 = 1
4x1 +2x2 +5x3 +3x4 = −1

(3.3)

The corresponding augmented matrix being:
1 −1 2 1 1
3 2 1 4 1
5 8 6 3 1
4 2 5 3 −1


We proceed by applying successively 3 Gauss reductions. In each one of these,
the following linear algebra elementary operation is being used: at the
kth reduction, k = 1, 2, 3, and for i = k + 1, ..., 4

(New) Equ i← (Previous) Equ i− (multiplier)× Pivot Equ k (3.4)

More explicitly:

1. Reduction 1. The pivot equation is the first equation (k = 1), the
pivot element is a11 = 1. The respective multipliers for i successively
2, 3, 4 are { a1ia11

= 3, 5, 4}. Thus, performing (3.4) repeatedly:

Equation 2← Equation 2− 3× Pivot Equation 1,

Equation 3← Equation 3− 5× Pivot Equation 1,

Equation 4← Equation 4− 4× Pivot Equation 1,

At this stage, the modified augmented matrix is:
1 −1 2 1 1
0 5 −5 1 −2
0 13 −4 −2 −4
0 6 −3 −1 −5

 .

© 2014 by Taylor & Francis Group, LLC

90 Introduction to Numerical Analysis and Scientific Computing

In order not to waste the implicitly zero storage locations, we use them to
place the multipliers of the first reduction. Hence, at the accomplishment
of reduction 1, the augmented matrix takes the form:

1 −1 2 1 1

3 5 −5 1 −2

5 13 −4 −2 −4

4 6 −3 −1 −5

 .

with the understanding that “boxed” elements are the corresponding
multipliers.

2. Reduction 2. Perform repeatedly operation (3.4) with the second
pivot equation (k = 2), the pivot element being here a22 = 5, and
i successively 3,4. The multipliers are respectively { a2ia22

= 13
5 ,

6
5}.

Equation 3← Equation 3− 13

5
× Equation 2,

Equation 4← Equation 4− 6

5
× Equation 2,

The second reduction yields the following augmented matrix:
1 −1 2 1 1
0 5 −5 1 −2
0 0 9 −23/5 6/5
0 0 3 −11/5 −13/5

 .

Adding the multipliers of the second reduction, the contents of the aug-
mented matrix updated data structure are as follows:

1 −1 2 1 1

3 5 −5 1 −2

5 13/5 9 −23/5 6/5

4 6/5 3 −11/5 −13/5

 .

Finally, we come to the last reduction.

3. Reduction 3. Perform operation (3.4) with the third pivot equation
(k = 3), the pivot element being a33 = 9, and the sole multiplier being
{ a3ia33

= 1
3}, for i = 4. Specifically:

Equation 4← Equation 4− 1

3
× Equation 3,

yields the augmented matrix:
1 −1 2 1 1
0 5 −5 1 −2
0 0 9 −23/5 6/5
0 0 0 −2/3 −3

 .

© 2014 by Taylor & Francis Group, LLC

Solving Systems of Linear Equations by Gaussian Elimination 91

Placing the multipliers, the updated augmented matrix is then:
1 −1 2 1 1

3 5 −5 1 −2

5 13/5 9 −23/5 6/5

4 6/5 1/3 −2/3 −3

 .

The back substitution applied on the upper triangular system yields:

(x1 = −217/30, x2 = 17/15, x3 = 73/30, x4 = 9/2)

We may now discuss the assumptions leading to the naive Gauss elimination.

3.4.1 Naive Gauss Elimination

The adjective naive applies because this form is the simplest form of
Gaussian elimination. It is not usually suitable for automatic computation
unless essential modifications are made. We give first the condition that allows
theoretically the procedure to work out successfully.

Definition 3.1 A square matrix An has the principal minor property, if
all its principal sub-matrices Ai, i = 1, ..., n are invertible, where

Ai =


a11 a12 a1i

a21 a22 a2i

...
ai1 ai2 aii



If a matrix A verifies Definition 3.1, the pivot element at each reduction is
well defined and is located on the main diagonal. Thus, ∀b ∈ Rn,1, the follow-
ing algorithms can be applied on the augmented matrix [A|b]. The first one
assumes that the matrix A is stored column-wise.

Algorithm 3.3 Column Naive Gauss

% The algorithm is column oriented

% The matrix A is assumed to have the principal minor property

% At reduction k, the kth equation is the pivot equation, A(k,k)

% is the pivot element, and equations 1,..,k remained unchanged

function[U, c]=NaiveGauss(A,b)

n=length(b) ;

for k=1:n-1

% Get the pivot element and the multipliers proceeding by columns

piv=A(k,k);

© 2014 by Taylor & Francis Group, LLC

92 Introduction to Numerical Analysis and Scientific Computing

for i=k+1:n

A(i,k)=A(i,k)/piv;

end

% Modify the body of matrix A proceeding by columns

for j=k+1:n

for i=k+1:n

A(i,j)=A(i,j)-A(i,k)*A(k,j);

end

end

% Modify the right hand side b

for i=k+1:n

b(i)=b(i)-A(i,k)*b(k);

end

end

% Extract c and U proceeding by columns

c=b;

U=triu(A);

The flop count for this algorithm can be easily evaluated:

1. To find the multipliers:

n−1∑
k=1

n∑
i=k+1

1 =
n−1∑
k=1

n− k = 1 + 2 + ...+ (n− 1) =
n(n− 1)

2
divisions

2. To modify the body of the matrix:

n−1∑
k=1

n∑
j=k+1

n∑
i=k+1

2 =

n−1∑
k=1

n∑
j=k+1

2(n− k) = 2

n−1∑
k=1

(n− k)2 = 2[12+22+...+(n−1)2]

= 2
[
n(n−1)(2n−1)

6

]
operations.

3. To modify the right hand side vector:

n−1∑
k=1

n∑
i=k+1

2 = 2
n−1∑
k=1

n− k = 2[1+2+...+(n−1)] = 2

[
n(n− 1)

2

]
operations

In terms of flops, these would total to:

n(n− 1)

2
+
n(n− 1)(2n− 1)

3
+ n(n− 1) =

n(n− 1)

6
(7 + 4n) = O(

2n3

3
).

The next version requires the same number of flops but is row oriented.

© 2014 by Taylor & Francis Group, LLC

Solving Systems of Linear Equations by Gaussian Elimination 93

Algorithm 3.4 Row Naive Gauss

% The algorithm is row oriented

% The matrix A is assumed to have the principal minor property

% At reduction k, the kth equation is the pivot equation and A(k,k)

% is the pivot element, and equations 1,..,k remained unchanged

function[c,U]=naiveGauss(A,b)

n=length(b) ;

for k=1:n-1

% Get the pivot element

piv=A(k,k);

% Proceed by row: get the multiplier for equation i

for i=k+1:n

A(i,k)=A(i,k)/piv;

% and modify its remaining coefficients, then its right hand side

for j=k+1:n

A(i,j)=A(i,j)-A(i,k)*A(k,j);

end

b(i)=b(i)-A(i,k)*b(k);

end

end

% Extract c and U

c=b;

U=triu(A);

The above 2 versions, that are the simplest expressions of Gaussian elimi-
nation, do not take into account the eventual sensitivity of the system to
propagate round-off errors.

3.4.2 Partial Pivoting Strategies: Unscaled (Simple) and
Scaled Partial Pivoting

When computing in floating point systems F, there are several situations
where the application of the naive Gaussian elimination algorithms fails al-
though the matrix A may verify the principal minor property.
As an illustration consider first the case where the pivot element is relatively
small in F. This would lead to large multipliers that worsen the round-off
errors, as shown in the following example.

Example 3.2 Consider the following 2× 2 system of equations, where ε is a
small non-zero number: {

εx1 + x2 = 2
3x1 + x2 = 1

(3.5)

© 2014 by Taylor & Francis Group, LLC

94 Introduction to Numerical Analysis and Scientific Computing

The exact solution to this problem in R is x1 ≈ −1
3 and x2 ≈ 2.

Naive Gauss elimination where the pivot is ε leads to:{
εx1 + x2 = 1

(1− 3
ε)x2 = 1− 6

ε

and the back substitution procedure would give:{
x2 = 1−6/ε

1−3/ε

x1 = 2−x2

ε

If these calculations are performed in a floating point system F, as 1/ε is large,
then {

1− 6
ε ≈ −

6
ε

1− 3
ε ≈ −

3
ε

The computed solutions in that case are incorrect, with:

x2 ≈ 2 and x1 ≈ 0.

However, if we perform a permutation of the equations before the reduction
process, then the equivalent system becomes:{

3x1 + x2 = 1
εx1 + x2 = 2

Carried out, naive Gauss reduction would lead to:{
3x1 + x2 = 1

(1− ε
3)x2 = 2− ε

3

Back substitution in this case would clearly give: x2 ≈ 2 and x1 ≈ −1/3.

This example leads us to conclude that some type of strategy is essential for
selecting new pivot equations and new pivots at each Gaussian reduction.
Theoretically complete pivoting would be the best approach. This process
requires at each stage, first searching over all entries of adequate submatrices
- in all rows and all columns - for the largest entry in absolute value and
then permuting rows and columns to move that entry into the required pivot
position. This would be quite expensive as a great amount of searching and
data movement would be involved. However, scanning just the first column in
the submatrix at each reduction and selecting as pivot the greatest absolute
value entry accomplishes our goal, thus avoiding too small or zero pivots.
This is unscaled (or simple) partial pivoting. It would solve the posed
problem, but compared to Complete Pivoting strategy, it does not involve an
examination of the entries in the rows of the matrix.
Moreover, rather than interchanging rows through the partial pivoting proce-
dure, that is to avoid the data movement, we use an indexing array. Thus,

© 2014 by Taylor & Francis Group, LLC

Solving Systems of Linear Equations by Gaussian Elimination 95

the order in which the equations are used is denoted by the row vector IV
called the index vector. At first, IV is set to [1, 2, ..., n], then at each reduc-
tion, if there would be a permutation in the rows, it is performed only on IV
which acts as a vector of pointers to the memory location of the rows. In fact,
at each reduction, IV=[i1, i2, ..., in] which is a permutation of the initial vector
IV . This definitely eliminates the time consuming and unnecessary process of
moving around the coefficients of equations in the computer memory.

We formalize now the unscaled partial pivoting procedure.

1. Gaussian Elimination with Unscaled Partial Pivoting
This strategy consists in first finding at reduction k, the “best” pivot
equation. This is achieved by identifying the maximum absolute value
element in the kth column, located in some row ranging from the kth

row to the last. More explicitly:
- At reduction k = 1 , seek i1 in the set {1, 2, ..., n} such that:

|ai1,1| = max
1≤i≤n

|ai1| = max {|a11|, |a21|, ..., |an1|}

then perform a permutation of row 1 and row i1 in IV only. Row i1 is the
first pivot equation, and ai1,1 is the pivot element. We write IV ([1, i1]) =
IV ([i1, 1]), meaning that at this stage,

IV = [i1, ..., 1, ..., n] = [i1, i2, ..., in]

- At reduction k, seek ik in {IV (k), ..., IV (n)}, such that:

|aik,k| = max
IV (k)≤i≤IV (n)

|aik| = max
{
|aIV (k),k|, |aIV (k+1),k|, ..., |aIV (n),k|

}
repositioning ik in IV will set ik = ik + (k − 1), so that row IV (ik) is
the pivot equation and aIV (ik),k is the pivot element. Perform then a
permutation of rows IV (k) and IV (ik)) in the last IV . Therefore one
writes:

IV ([k, ik]) = IV ([ik, k])

As such, in case of effective row permutation, the Naive Gauss Elimina-
tion algorithm is modified as follows:

% The algorithm is column oriented

% At reduction k, a search is made in the kth column (in rows k to n)

% to find the maximum absolute value column element (p=max)

n=length(b);

for k=1:n-1

[p,ik]=max(abs(A(k:n,k)));

% Permutation of rows k and ik is then performed

A([k ik])=A([ik k]);

piv=A(k,k);

....................

© 2014 by Taylor & Francis Group, LLC

96 Introduction to Numerical Analysis and Scientific Computing

If an index vector is referred to, the algorithm proceeds as follows.

Algorithm 3.5 Column Unscaled Partial Pivoting Gauss

function[U,c]=PartialPivotingGauss(A,b)

% An index vector is used to keep track of the location of the rows

n=length(b);

IV=1:n

%At reduction k, find the absolute value maximum column element

%and its position in IV starting from kth component

for k=1:n-1

[p, ik]=max(abs(A(IV(k:n),k));

% find the position of ik in last IV

ik=ik + k - 1 ;

% Permutation of rows k and ik is then performed through IV

IV([k ik])=IV([ik k]);

% Identify the pivots

piv=A(IV(k),k);

% Find the multipliers

for i=k+1:n

A(IV(i),k)=A(IV(i),k)/piv;

end

% Modify the body of matrix A and right hand side b

for j=k+1:n

for i=k+1:n

A(IV(i),j)=A(IV(i),j)-A(IV(i),k)*A(IV(k),j);

end

end

for i=k+1:n

b(IV(i))=b(IV(i))-A(IV(i),k)*b(IV(k));

end

%Extract U,c

c=b(IV);

U=triu(A(IV,:));

Example 3.3 Solve the following system using unscaled partial pivoting
Gaussian reduction.

3x1 −13x2 +9x3 +3x4 = −19
−6x1 +4x2 +x3 −18x4 = −34
6x1 −2x2 +2x3 +4x4 = 16
12x1 −8x2 +6x3 +10x4 = 26

(3.6)

We first initialize the index vector of the system:

IV 1 2 3 4

© 2014 by Taylor & Francis Group, LLC

Solving Systems of Linear Equations by Gaussian Elimination 97

The augmented matrix for the system above is:
3 −13 9 3 −19
−6 4 1 −18 −34
6 −2 2 4 16
12 −8 6 10 26


(a) Reduction 1 Seek the pivot equation:

max{3, | − 6|, 6, 12} = 12.

First occurrence of the maximum is at the fourth position, i.e., at
IV (4)=4 (meaning that at this stage, the fourth component of IV
is equation 4). So, one needs to perform the permutation of rows 1
and 4 through the index vector IV , the pivot equation becoming
effectively equation 4 and the pivot element being 12. Updating the
index vector, computing the multipliers aIV (i),1/12, i = 2, 3, 4 and
simultaneouslly modifying the body of matrix and right hand side
leads to:

IV 4 2 3 1


1/4 −11 15/2 1/2 −51/2

-1/2 0 4 −13 −21

1/2 2 −1 −1 3

12 −8 6 10 26


(b) Reduction 2 Similarly, one starts with a search for the pivot equa-

tion:

max
IV (2),IV (3),IV (4)

{|aIV (2),2|, |aIV (3),2, |aIV (4),2|}

= max {| − 11|, 0, 2} = 11

The maximum 11 occurs at IV (4) = 1. Hence we perform the per-
mutation of Equations IV (2) = 2 and IV (4) = 1. Thus, the pivot
equation is row 1 and the pivot element is −11. Computing the
multipliers and proceeding into the modifications of the remaining
part of the augmented matrix leads to the following profile of the
index vector and of the matrix data:

IV 4 1 3 2


1/4 −11 15/2 1/2 −51/2

-1/2 0 4 −13 −21

1/2 -2/11 4/11 −10/11 −18/11

12 −8 6 10 26



© 2014 by Taylor & Francis Group, LLC

98 Introduction to Numerical Analysis and Scientific Computing

(c) Reduction 3 In this last stage, seek the pivot equation:

max
IV (3),IV (4)

{|aIV (3),3|, |aIV (4),3|} = max{4, 4/11} = 4.

The maximum 4 occurs at IV (4) = 2. Hence we perform the permu-
tation of Equations IV (4) = 2 and IV (3) = 3. It is easily verified
at the end of the process the contents of the data structure are as
follows:

IV 4 1 2 3
1/4 −11 15/2 1/2 −51/2

-1/2 0 4 −13 −21

1/2 -2/11 1/11 3/11 3/11

12 −8 6 10 26


Obviously, back substitution yields:

x4 = 1, x3 = −2, x2 = 1, x1 = 3

Consider now the special case of a system of equations where the co-
efficients in a same row have a relatively large variation in magnitude.
Gaussian elimination with simple partial pivoting is not sufficient and
could lead to incorrect solutions as shown in the following example.

Example 3.4 Consider the following 2× 2 system of equations, where
C is a large positive number.{

3x1 + Cx2 = C
x1 + x2 = 3

(3.7)

The exact solution to this problem in R is x1 ≈ 2 and x2 ≈ 1.
Applying the simple partial pivoting Gauss elimination, and since

max{3, 1} = 3

the first row is the pivot equation, the pivot is 3 and the sole multiplier
is 1

3 . This leads to: {
3x1 + Cx2 = C

(1− 1
3C)x2 = 3− 1

3C

where the back substitution procedure gives:{
x2 =

3− 1
3C

1− 1
3C

x1 = C(1−x2)
3

© 2014 by Taylor & Francis Group, LLC

Solving Systems of Linear Equations by Gaussian Elimination 99

If these calculation are performed in a floating point system F with finite
fixed precision, and since C is large, then{

3− 1
3C ≈ −

1
3C

1− 1
3C ≈ −

1
3C

Therefore, the computed solutions would be:

x2 ≈ 1 and x1 ≈ 0.

However scaling the rows first then selecting as pivot the scaled absolute
value entry, improves the situation. The row scales vector being S =
[C, 1], to select the pivot equation, one would compute

max{ 3

C
,

1

1
} = 1

Consequently, in this example, the second row is selected as pivot equa-
tion. Now the pivot is 1 and the multiplier is 3. Carried out, the scaled
partial pivoting Gauss reduction would lead to:{

(C − 3)x2 = (C − 9)
x1 + x2 = 3

Back substitution in this case would clearly give: x2 ≈ 1 and x1 ≈ 2.

In view of this example, a more elaborate version than the simple partial
pivoting would be the scaled partial pivoting, where we set up a
strategy that simulates a scaling of the row vectors and then selects as
a pivot element the relatively largest scaled absolute value entry in a
column. This process would, in some way, load balance the entries of
the matrix.
We formalize now this variation of simple pivoting strategies.

2. Gaussian Elimination with Scaled Partial Pivoting
In this strategy, scaled values are used to determine the best partial piv-
oting possible, particularly if there are large variations in magnitude of
the elements within a row. Besides the index vector IV that is created
to keep track of the equation-permutations of the system, a scale fac-
tor must be computed for each equation. We define the absolute value
maximum element of each row si by:

si = max
1≤j≤n

{|aij |} ; 1 ≤ i ≤ n

The column scale vector is therefore: s = [s1, s2, ..., sn]′.
For example in starting the forward elimination process, we do not arbi-
trarily use the first equation as the pivot equation as in the naive Gauss

© 2014 by Taylor & Francis Group, LLC

100 Introduction to Numerical Analysis and Scientific Computing

elimination, nor do we select the row with maximum absolute value in
the entries of the first column, as in the simple partial pivoting strategy.
Instead we scan first in column 1 the ratios{

|ai,1|
si

, i = 1, ..., n

}
and select the equation (or row) for which this ratio is greatest. Let i1
be the first index for which the ratio is greatest, then:

|ai1,1|
si1

= max
1≤i≤n

{
|ai,1|
si

}
Interchange i1 and 1 in the index vector only, which is now
IV=[i1, i2, ...in]. In a similar way, proceed next to further reduction
steps. Notice that through this procedure, the scale factors are com-
puted once. They are not changed after each pivot step as the additional
amount of computations are not worthwhile.
We give now a version of the newly devised algorithm.

Algorithm 3.6 Column Scaled Partial Pivoting Gauss

% Initialize IV and seek the scales

IV=1:n ;

for i=1:n

s(i)=max(abs(A(i,1:n))

end

% Alternatively: s=(max(abs(A’)))’

% At reduction k, find the absolute value of maximum scaled column element

for k=1:n-1

[p, ik]=max(abs(A(IV(k:n),k) ./ s(IV(k:n))) ;

ik=ik+k-1;

IV([k ik])= IV([ik k]) ;

.........Same as Partial Pivoting..............

As an illustration to the method, let us apply the scaled partial pivoting
Gaussian reduction on the system of equations of the preceding example.

Example 3.5

We first set the index vector and evaluate the scales of the system:

IV 1 2 3 4

Augmented matrix Scales
3 −13 9 3 −19 13
−6 4 1 −18 −34 18
6 −2 2 4 16 6
12 −8 6 10 26 12

© 2014 by Taylor & Francis Group, LLC

Solving Systems of Linear Equations by Gaussian Elimination 101

(a) Reduction 1 Seek the pivot equation:

max {3/13, 6/18, 1, 1}.

First occurrence of the maximum is the 3rd one, i.e., at IV (3)=3
(meaning that the third component of IV is equation 3). So, one
needs to perform the permutation of rows 1 and 3 through the
index vector IV , the pivot equation becoming equation 3 and the
pivot element being 6. Updating the index vector and computing
the multipliers aIV (i),1/6, i = 2, 3, 4 would yield:

IV 3 2 1 4

Augmented matrix Scales

1/2 −13 9 3 −19 13

-1 4 1 −18 −34 18
6 −2 2 4 16 6

2 −8 6 10 26 12

Modifying the body of matrix and right hand side leads to:

Augmented matrix Scales

1/2 −12 8 1 −27 13

-1 2 3 −14 −18 18
6 −2 2 4 16 6

2 −4 2 2 −6 12

(b) Reduction 2 Similarly to reduction 1, one starts with a search for
the pivot equation:

max
IV (2),IV (3),IV (4)

{
|aIV (2),2|
sIV (2)

,
|aIV (3),2|
sIV (3)

,
|aIV (4),2|
sIV (4)

} = max {2/18, 12/13, 4/12}.

The maximum 12/13 occurs at IV (3) = 1. Hence we perform the
permutation of Equations IV (2) = 2 and IV (3) = 1. Thus, the
pivot equation is row 1 and the pivot element is −12. Computing
the multipliers and proceeding into the modifications of the remain-
ing part of the augmented matrix leads to the following profile of
the index vector and of the matrix data:

IV 3 1 2 4

Augmented matrix Scales

1/2 −12 8 1 −27 13

-1 -1/6 13/3 −83/6 −45/2 18

6 −2 2 4 16 6

2 1/3 −2/3 5/3 3 12

© 2014 by Taylor & Francis Group, LLC

102 Introduction to Numerical Analysis and Scientific Computing

(c) Reduction 3 This last step keeps the index vector unchanged since

max
{
| 13
3×18 |; |

2
3×12 |

}
= 13

3×18 . It is easily verified at the end of the

process the contents of the data structure are as follows:

IV 3 1 2 4

Augmented matrix Scales

1/2 −12 8 1 −27 13

-1 -1/6 13/3 −83/6 −45/2 18

6 −2 2 4 16 6

2 1/3 -2/13 −6/13 −6/13 12

Obviously, back substitution yields:

x4 = 1, x3 = −2, x2 = 1, x1 = 3.

3.5 LU Decomposition

A major by-product of Gauss elimination is the decomposition or fac-
torization of a matrix A into the product of a unit lower triangular ma-
trix L by an upper triangular one U. We will base our arguments on the
systems of equations (3.3) and (3.6).

1. First case : Naive Gauss
Going back to (3.3) and on the basis of the multipliers of naive Gauss
elimination, let L and U be respectively the unit lower and the upper
triangular matrices of the process:

L =


1 0 0 0
3 1 0 0
5 13

5 1 0
4 6

5
1
3 1

 ; U =


1 −1 2 1
0 5 −5 1
0 0 9 −23/5
0 0 0 −2/3


Note that the product LU verifies:

1 0 0 0
3 1 0 0
5 13

5 1 0
4 6

5
1
3 1




1 −1 2 1
0 5 −5 1
0 0 9 − 23

5
0 0 0 − 2

3

 =


1 −1 2 1
12 −8 6 10
3 2 1 4
4 2 5 3


(3.8)

© 2014 by Taylor & Francis Group, LLC

Solving Systems of Linear Equations by Gaussian Elimination 103

which is precisely:

LU = A.

This identity obeys the following theorem ([10], [16]):

Theorem 3.1 Let A ∈ Rn,n be a square matrix verifying the principal
minor property. If A is processed through naive Gauss reduction, then A
is factorized uniquely into the product of a unit lower triangular matrix
L and an upper triangular matrix U associated to the reduction process,
with

A = LU

2. Second case: Partial Pivoting
Consider now the scaled partial pivoting reduction applied on (3.6).
Based on the last status of IV = [3, 1, 2, 4], we extract successively the
unit lower and the upper triangular matrices of the process:

L =


1 0 0 0

1/2 1 0 0
−1 −1/6 1 0
2 1/3 −2/13 1

 ; U =


6 −2 2 4
0 −12 8 1
0 0 13/3 −83/6
0 0 0 −6/13


Computing the product LU gives:

1 0 0 0
1/2 1 0 0
−1 −1/6 1 0
2 1/3 −2/13 1




6 −2 2 4
0 −12 8 1
0 0 13/3 −83/6
0 0 0 −6/13

 =


6 −2 2 4
3 −13 9 3
−6 4 1 −18
12 −8 6 10


The product matrix is the matrix A up to a permutation matrix
P = P (IV), associated to the final status of the index vector. We write
then

LU = P (IV)A

where P is defined as follows:

Definition 3.2 Let I ∈ Rn,n, be the identity matrix defined by its rows,
i.e.,

I =


e1

e2

...
en


Let IV = [i1, i2, ..., in] be the last status of the index vector through
the partial pivoting procedures. The permutation matrix P associated to

© 2014 by Taylor & Francis Group, LLC

104 Introduction to Numerical Analysis and Scientific Computing

IV is a permutation of the identity matrix I, and is given by the row
matrix:

P = P (IV) =


ei1
ei2
...
ein


In example 3.5, the final status of IV = [3, 1, 2, 4]. Thus,

P = P (IV) =


e3

e1

e2

e4

 =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


Note then that the product:

PA =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1




3 −13 9 3
−6 4 1 −18
6 −2 2 4
12 −8 6 10


is precisely the product LU found above. Hence the LU decomposition theo-
rem which generalizes Theorem 3.1 stands as follows:

Theorem 3.2 Let a square matrix A ∈ Rn,n be processed through partial
pivoting Gauss reduction. If the unit lower triangular matrix L , the upper
triangular matrix U and the index vector IV are extracted from the final status
of the process then:

P (IV)A = LU

where P (IV) is the permutation matrix associated to the reduction process.

Note also that this decomposition of A is unique.

The LU decomposition or factorization of A is particularly helpful in comput-
ing the determinant of A, in solving different systems of equations Ax = b,
where the coefficient matrix A is held constant, or also in computing the
inverse of A.

3.5.1 Computing the Determinant of a Matrix

Clearly from Theorems 3.1 and 3.2, we conclude respectively that in the
first case

det(A) = det(L)× det(U)

while in the second case

det(A) = (−1)s × det(L)× det(U)

© 2014 by Taylor & Francis Group, LLC

Solving Systems of Linear Equations by Gaussian Elimination 105

as det(P) = (−1)s, s being the number of permutations performed on IV
through the partial pivoting procedures.
These results are stated hereafter:

Theorem 3.3 (a) Under the hypothesis of Theorem 3.1,

det(A) =
n∏
i=1

uii,

(b) Under the hypothesis of Theorem 3.2,

det(A) = (−1)s
n∏
i=1

uii,

where uii, , i = 1, ..., n are the diagonal elements of the upper triangular matrix
U associated to the reduction process.

One easily verifies that in example 3.4

det(A) = 1× 5× 9× 2

3
= 30

while in example 3.5:

det(A) = 6× (−12)× 13/3× (−6/13) = 144

since s = 2 .

3.5.2 Computing the Inverse of A

The LU decomposition of a matrix A is also useful in computing its inverse
denoted by A−1 and verifying the property

AA−1 = I

where I is the identity matrix. Let cj and ej represent respectively the jth

column of A−1 and that of I, then one writes:

A[c1 c2 ... cn] = [e1 e2 ... en] (3.9)

1. First case : Naive Gauss
Under the hypothesis of Theorem 1 and since LU = A, then (3.9) is
equivalent to:

LU [c1 c2 ... cn] = [e1 e2 ... en]

To obtain A−1 it is therefore enough to solve for cj , in turn:

LUcj = ej , for j = 1, ..., n

© 2014 by Taylor & Francis Group, LLC

106 Introduction to Numerical Analysis and Scientific Computing

By letting Ucj = y, one has then to solve successively the following 2
triangular systems:
(i) The lower triangular system Ly = ej , and get the vector y by for-
ward substitution.
(ii) The upper triangular system Ucj = y, and get the jth column cj
by backward substitution.

Example 3.6 Use the LU decomposition of A based on the naive Gauss
reduction applied to (3.3), to find the first column of A−1

Referring to Example 3.1, solving:
(i) The lower triangular system Ly = e1, gives y = [1,−3, 14/5, 4/3]′ by
forward substitution.
(ii) The upper triangular system Uc1 = y, gives c1 = [158/45,−41/45,−32/45,−2]′

by backward substitution.

2. Second case : Partial Pivoting
Under the hypothesis of Theorem 2 and since LU = PA, then (3.9) is
equivalent to:

PAA−1 = P

or equivalently:
LU [c1 c2 ... cn] = [p1 p2 ... pn]

where pj is the jth column of P .
To obtain A−1 it is therefore enough to solve for cj , in turn:

LUcj = pj , for j = 1, ..., n

using the same 2 steps as in the first case above.

Remark 3.1 Note that in Definition 2, the permutation matrix P is defined
in terms of its rows, while in the process of computing A−1, one has first to
identify the columns of P.

Example 3.7 Use the LU decomposition of A based on the scaled partial
pivoting reduction applied to (3.6), to find the last column of A−1

Referring to Example 3.3, solving:
(i) The lower triangular system Ly = p4, gives y = [0, 0, 0, 1]′ by forward sub-
stitution.
(ii) The upper triangular system Uc1 = y, gives c4 = [155/72,−115/24,−83/12,−13/6]′

by backward substitution.

Remark 3.2 Forward Substitution
In finding the inverse of the matrix A using its LU decomposition, one has
to solve lower triangular systems of the form Ly = v, for some well defined
vector v. For that purpose the forward substitution algorithm is needed prior

© 2014 by Taylor & Francis Group, LLC

Solving Systems of Linear Equations by Gaussian Elimination 107

to back substitution. We give successively the column then the row oriented
version.

Algorithm 3.7 Column Forward Substitution

function x = ColForwardSubstitution(L,c)

% Input: L a lower-triangular invertible matrix, and

% c a column vector

% Output: solution vector x of system Lx = c

% Storage is column oriented

n=length(c) ;

for j=n:-1:1

x(j)=c(j)/U(j,j);

for i=1: j-1

c(i)=c(i) - U(i,j) * x(j);

end

end

As for the row version, it is implemented as follows:

Algorithm 3.8 Row Forward Substitution

function x = RowForwardSubstitution(L,c)

% Input: L a lower-triangular invertible matrix, and

% c a column vector

% Output: solution vector x of system Lx = c

% Storage is row oriented

n=length(c) ;

for j=n:-1:1

x(j)=c(j)/U(j,j);

for i=1: j-1

c(i)=c(i) - U(i,j) * x(j);

end

end

3.5.3 Solving Linear Systems Using LU Factorization

Generalizing the method above, if the LU factorization of A is available,
one can as well solve systems Ax = v varying the right hand side vector v
only. That is, one solves consecutively 2 triangular systems:
(i) A lower triangular system by forward substitution.
(ii) An upper triangular system by backward substitution.

Straightforward illustrations to this procedure are left as exercises.

© 2014 by Taylor & Francis Group, LLC

108 Introduction to Numerical Analysis and Scientific Computing

3.6 Exercises

1. Solve each of the following systems using naive Gaussian elimination
and back substitution. Show the multipliers at each stage. Carry five
significant figures and round to the closest.

(a)

 3x1 + 4x2 + 3x3 = 5
x1 + 5x2 − x3 = 0

6x1 + 3x3 + 7x3 = 3

(b)

 3x1 + 2x2 − 5x3 = 0
4x1 − 6x2 + 2x3 = 0
x1 + 4x2 − x3 = 4

(c)

 9x1 + x2 + 7x3 = 1
4x1 + 4x2 + 9x3 = 0
8x1 + 9x2 + 6x3 = 1

2. Apply the naive Gaussian elimination on the following matrices, showing
the multipliers at each stage.

(a)


4 2 1 2
1 3 2 1
1 2 4 1
2 1 2 3



(b)


1 −1 2 1
4 2 5 3
3 2 1 4
5 8 6 3


3. Solve each of the following systems using Gaussian elimination with

unscaled partial pivoting and back substitution. Write the index vector
and the multipliers at each step. Carry five significant figures and round
to the closest.

(a)

 8x1 + 9x2 + 2x3 = 99
9x1 + 6x2 − 5x3 = 132
1x1 + 0x2 + 9x3 = 90

(b)

 8x1 + x2 + 8x3 = 49
9x1 + x2 + 2x3 = 33
5x1 + 2x2 + 8x3 = 52

(c)

 3x1 + 2x2 − x3 = 7
5x1 + 3x2 + 2x3 = 4
−x1 + x2 − 3x3 = −1

© 2014 by Taylor & Francis Group, LLC

Solving Systems of Linear Equations by Gaussian Elimination 109

4. Apply the unscaled partial pivoting Gaussian elimination on the fol-
lowing matrices, showing the multipliers and the index vector at each
stage.

(a)


6 6 2 6
7 1 0 3
7 7 0 9
3 0 8 0



(b)


1 −1 2 1
3 2 1 4
5 8 6 3
4 2 5 3


5. Solve each of the following systems using Gaussian elimination with

scaled partial pivoting and Back substitution. Write the scales vector,
the index vector, and the multipliers at each step.Carry five significant
figures and round to the closest.

(a)


x1 +x2 +6x3 +2x4 = 2
7x1 +6x2 +7x3 +9x4 = 0
3x1 +2x2 +4x3 +x4 = −1
5x1 +6x2 + +8x4 = 0

(b)

 3x1 +−9x3 = 3
5x1 + 5x2 + x3 = −20

7x2 + 5x3 = 0

(c)


x1 + 8x2 + 2x3 + x4 = 5

9x1 + 8x2 + 8x3 + 2x4 = 4
+4x3 + x4 = 0

7x1 + 3x2,+9x3 + x4 = −1

6. Apply the scaled partial pivoting Gauss elimination on the following
matrices, showing the scales vector, the index vector, and the multipliers
at each stage.

(a)

 1 4 5
2 3 5
6 8 9



(b)


1 7 6 9
4 7 1 3
4 2 1 5
6 6 4 2



(c)


1 0 3 0
0 1 3 −1
3 −3 0 6
0 2 4 −6



© 2014 by Taylor & Francis Group, LLC

110 Introduction to Numerical Analysis and Scientific Computing

7. Consider the following system of 2 equations in 2 unknowns:

(S)

{
10−5x+ y = 7
x+ y = 1

(a) Find the exact solution of (S) in R.

(b) Use the naive Gaussian reduction to solve (S) in F (10, 4,−25,+26)
and compare the result with the exact solution.

(c) Use the partial pivoting Gaussian reduction to solve (S) in
F (10, 4,−25,+26) and compare the result with the exact solution.

8. Consider the following system of 2 equations in 2 unknowns:

(S)

{
2x+ 105y = 105

x+ y = 3

(a) Find the exact solution of (S) in R.

(b) Use the simple partial pivoting Gaussian reduction to solve (S)
up to 4 significant figures and compare the result with the exact
solution.

(c) Use the scaled partial pivoting Gaussian reduction to solve (S) up to
4 significant figures and compare the result with the exact solution.

9. Based on the naive Gaussian reduction applied to each coefficient matrix
A of Exercise 2:

(a) Determine the unit lower triangular matrix L and the upper trian-
gular matrix U .

(b) Use the LU decomposition of A to compute the determinant of A.

(c) Use the LU decomposition of A to determine the inverse of A.

10. Based on the unscaled partial pivoting Gaussian reduction applied to to
the first matrix A of Exercise 4:

(a) Determine the unit lower triangular matrix L, the upper unit tri-
angular matrix U and the permutation matrix P .

(b) Use the LU decomposition of A to compute the determinant of A.

(c) Use the LU decomposition of A to determine the first column of
the inverse of A.

11. Based on the scaled partial pivoting Gaussian reduction applied to each
coefficient matrix A of Exercise 6:

(a) Determine the unit lower triangular matrix L, the upper unit tri-
angular matrix U and the permutation matrix P .

© 2014 by Taylor & Francis Group, LLC

Solving Systems of Linear Equations by Gaussian Elimination 111

(b) Use the LU decomposition of A to compute the determinant of A.

(c) Use the LU decomposition of A to determine the second column of
the inverse of A.

12. Use the LU decomposition of the matrix A in exercises 2(a), 4(a) and
6(a) to solve:

(a) Ax = [1, 1, 1, 1]′

(b) Ax = [−1, 2, 0,−1]′

13. Based on the following definition:

Definition 3.3 A square matrix A of size n×n is strictly diagonally
dominant if for every row, the magnitude of the diagonal entry is larger
then the sum of the magnitude of all the other non- diagonal entries, in
that row. i.e.,

|A(i, i)| >
n∑
j=1

|A(i, j)| ;∀ i = 1, 2, ..., n

Determine which of the following matrices is strictly diagonally domi-
nant? Satisfies the principal minor property?

(a) A =

 8 −1 4
1 −10 3
−5 0 15



(b) B =


8 −1 4 9
1 7 3 0
−5 0 −11 3
4 3 2 12



(c) C =


28 −1 4 9 2
1 30 3 9 7
0 0 7 3 0
4 3 2 20 7
3 0 0 0 9


14. Find a set of values for a, b and c for which the following matrix is strictly

diagonally dominant. 
a 1 0 b 0
a 9 1 3 −1
c a 10 5 −1
a b c −6 1
1 c 0 0 a



© 2014 by Taylor & Francis Group, LLC

112 Introduction to Numerical Analysis and Scientific Computing

15. Apply the naive Gauss reduction on the following strictly diagonally
dominant band matrices. (As such, the naive Gauss reduction is suc-
cessfully applicable on the matrix).

(a) For each matrix below, determine at each reduction, the multipliers
and the elements of the matrix that are modified.

(b) Extract the upper triangular matrix U and the lower unit triangular
matrix L obtained at the end of this process.

(c) Determine the total number of operations needed for the LU de-
composition of the given matrix.

• Let Tn be a triangular matrix, with

Tn =



a1 b1 0 0 ... 0
c1 a2 b2 0 ... 0
0 c2 a3 b3 ... 0
....
....
.... cn−2 an−1 bn−1

0 ... 0 0 cn−1 an


• Let UQn be an upper quadri-diagonal matrix, with

UQn =



a1 b1 d1 0 ... 0
c1 a2 b2 d2 ... 0
0 c2 a3 b3 ... 0
....
.... ... cn−3 an−2 bn−2 dn−2

.... cn−2 an−1 bn−1

0 ... 0 0 cn−1 an


• Let LQn be a lower quadri-diagonal matrix, with

LQn =



a1 b1 0 0 ... 0
c1 a2 b2 0 ... 0
d1 c2 a3 b3 ... 0
....
....
.... ... dn−3 cn−2 an−1 bn−1

0 ... 0 dn−2 cn−1 an


16. Consider the following 5× 5 strictly diagonally dominant lower Hessen-

berg matrix

A =


4 1 0 0 0
1 4 1 0 0
1 1 4 1 0
1 1 1 4 1
1 1 1 1 4



© 2014 by Taylor & Francis Group, LLC

Solving Systems of Linear Equations by Gaussian Elimination 113

1- Apply the naive Gauss reduction on the matrix A showing the status
of that matrix after each elimination, then extract out of this process,
the upper triangular matrix U and the unit lower triangular matrix P .
2- Check that at each reduction, the multipliers reduce to one value, and
at each reduction except the last, the modified elements reduce to two
values, in addition to the diagonal element at last reduction. Compute
the total number of flops needed for the LU-decomposition of the matrix
A.
3- Deduce the total number of flops needed for the LU -decomposition
of the (n× n) diagonally dominant lower Hessenberg matrix B where c
is a constant and

B =



c 1 0 0 . . . 0
1 c 1 0 . . . 0
1 1 c 1 0 . . 0
.
.
1 1 1 . . 1 c 1
1 1 1 1 . . 1 c


Express your answer in terms of n.

17. Evaluate the complexity of the following algorithms used in this chapter

• The Column-Backward Substitution algorithm.

• The Row-Forward Substitution algorithm.

© 2014 by Taylor & Francis Group, LLC

114 Introduction to Numerical Analysis and Scientific Computing

3.7 Computer Projects

Exercise 1: Naive Gauss for Special Pentadiagonal Matrices

Definition 3.4 A pentadiagonal matrix A is a square matrix with 5 non-
zero diagonals: the main diagonal d, 2 upper subdiagonals u and v, then 2
lower subdiagonals l and m:

A =



d(1) u(1) v(1) 0 0 . . 0
l(1) d(2) u(2) v(2) 0 . . 0
m(1) l(2) d(3) u(3) v(3) . . 0

0 m(2) l(3) d(4) u(4) . . 0
0
.
. . 0 m(n− 4) l(n− 3) d(n− 2) u(n− 2) v(n− 2)
0 . . 0 m(n− 3) l(n− 2) d(n− 1) u(n− 1)
0 0 . . 0 m(n− 2) l(n− 1) d(n)


Definition 3.5 A penta-diagonal matrix A is strictly diagonally domi-
nant if for every row, the magnitude of the diagonal entry is larger than the
sum of the magnitude of all the other non diagonal entries in that row.

|d(i)| > |u(i)|+ |v(i)|+ |l(i− 1)|+ |m(i− 2)| ;∀ i = 1, 2, ..., n

As such, the matrix A will satisfy the principal minor property, and therefore
naive Gauss reduction is successfully applicable on A.
Let A be a strictly diagonally dominant penta-diagonal matrix.

1. Write a MATLAB

function [m1,l1,d1,u1,v1]=NaiveGaussPenta(m,l,d,u,v,tol)

that takes as input 5 column vectors m, l, d, u and v representing the
5 diagonals of A, and some tolerance tol. At each reduction, if the abso-
lute value of the pivot element is less then tol, an error message should
be displayed, otherwise this function performs naive Gauss reduction on
the matrix A and returns through the process, the 5 modified diagonals
m1, l1, d1, u1 and v1.
Your function should neither use the built-in MATLAB function that fac-
torizes A into L and U nor use the general code for naive Gauss re-
duction. Your code should be specifically designed for pentadiagonal
matrices only and should use the least number of flops.

2. Write a MATLAB

function x = RowForwardPenta(d, l, m, c)

that takes as input 3 column vectors representing the main diagonal d
and 2 lower diagonals l and m of an invertible lower triangular matrix
L and a column vector c. This function performs row-oriented forward

© 2014 by Taylor & Francis Group, LLC

Solving Systems of Linear Equations by Gaussian Elimination 115

substitution to solve the system Lx = c, using the least number of flops.
Your code should be designed for pentadiagonal matrices only.

3. Write a MATLAB

function x = RowBackwardPenta(d, u, v, c)

which takes as input 3 column vectors representing the main diagonal d
and 2 upper diagonals u and v of an invertible upper triangular matrix
U and a column vector c. This function performs row-oriented backward
substitution to solve the system Ux = c, using the least number of flops.
Your code should be designed for pentadiagonal matrices only.

4. Write a MATLAB

function B = InversePenta(m, l, d, u, v, tol)

that takes as input the 5 diagonals of the pentadiagonal matrix A and
outputs B, the inverse of the matrix A.
Your function should call for the previous functions programmed in parts
1, 2 and 3.

5. Write a MATLAB

function T =InverseTransposePenta(m, l, d, u, v, tol)

that takes as input the 5 diagonals of the pentadiagonal matrix A and
outputs T = (AT)−1, the inverse of the transpose of A. Your function
should be based on the LU -decomposition of A, and call for the functions
programmed in parts 1, 2 and 3. Hint: If A = LU , then:

• AT = (LU)T = UTLT .

• Since ATT = I, then

AT [c1, c2, ..., cn] = UTLT [c1, c2, ..., cn] = [e1, e2, ..., en]

⇔ UTLT [ci] = [ei], for i = 1, 2, ..., n,

where ci is the ith column of T and ei is the ith column of the
identity matrix I.

6. Test each of your functions on 3 different strictly diagonally domi-
nant pentadiagonal matrices with n ≥ 5. (In one of the test cases,
choose one of the Pivot elements smaller than tol). Save your inputs and
outputs in a separate document.

Exercise 2: Naive Gauss Reduction on Upper Hessenberg Matrices
A Hessenberg matrix is a special kind of square matrix, one that is “almost”
triangular. To be exact, an upper Hessenberg matrix has zero entries below
the first sub-diagonal.

© 2014 by Taylor & Francis Group, LLC

116 Introduction to Numerical Analysis and Scientific Computing

H =


H(1, 1) H(1, 2) H(1, 3) . . H(1, n)
H(2, 1) H(2, 2) H(2, 3) H(2, 4) . H(2, n)

.

.
0 . 0 H(n− 1, n− 2) H(n− 1, n− 1) H(n− 1, n)
0 . . 0 H(n, n− 1) H(n, n)


Definition: An upper Hessenberg matrix H is strictly diagonally dominant
if for every row, the magnitude of the diagonal entry is larger than the sum
of the magnitude of all the other non-diagonal entries in that row.

|H(i, i) > |H(i, i− 1)|+ |H(i, i+ 1)|+ ...+ |H(i, n)| ∀ i = 1, 2, ..., n

(As such, the matrix H will satisfy the principal minor property, and the naive
Gauss reduction is successfully applicable on H.)
Let H be a strictly diagonally dominant upper Hessenberg matrix.

1. Write a MATLAB

function [L, U] = NaiveGaussUHessenberg(H)

that takes as input an n×n strictly diagonally dominant upper Hessen-
berg matrix H. This function performs naive Gauss reduction on H and
returns at the end of the process, the upper and unit lower triangular
matrices U and L.
Your function should neither use the built-in MATLAB function that fac-
torizes A into the product of L and U , nor use the general code for
naive Gauss reduction. Your code should be designed for upper Hessen-
berg matrices only, and should use the least number of flops.

2. Write a MATLAB

function [x] = RowForwardUHessenberg(L, c)

that takes as input an invertible bi-diagonal lower triangular square ma-
trix L of size n (displayed below) and a column vector c of length n.
This function performs row-oriented forward substitution to solve the
system Lx = c, using the least number of flops. Your code should be
designed for bi-diagonal lower triangular matrices only and should use
the least number of flops.

L =



L(1, 1) 0 0
L(2, 1) L(2, 2) 0 0 . . . 0

0 L(3, 2) L(3, 3) 0 0
0 0 L(4, 3) L(4, 4) 0 .) . 0
.
.
0 . . . 0 L(n− 1, n− 2) L(n− 1, n− 1) 0
0 0 . . . 0 L(n, n− 1) L(n, n)


3. Write a MATLAB

function [B] = InverseUHessenberg(H)

© 2014 by Taylor & Francis Group, LLC

Solving Systems of Linear Equations by Gaussian Elimination 117

that takes as input an invertible upper Hessenberg matrix H, and outputs
B, the inverse of H, using the LU -decomposition of H. Your function
should call for the previous functions programmed in parts 1 and 2.

4. Test each of your functions above for 2 different upper Hessenberg
strictly diagonally dominant matrices, with n ≥ 5, and save the re-
sults in a separate document.
Call for previous functions when needed.
Do not check validity of the inputs.
Hint: To construct an n×n upper Hessenberg strictly diagonally dom-
inant matrix H, proceed using the following MATLAB instructions:

A = rand(n);

m=max(sum(A));

m1=max(sum(A’));

s=max(m, m1);

B=A + s*eye(n);

H=triu(B, -1);

Exercise 3: Naive Gauss on Arrow Matrices
An arrow matrix is a special kind of square sparse matrix, in which there is
a tri-diagonal banded portion, with a column at one side and a row at the
bottom.

A =



d(1) u(1) 0 0 c(1)
l(1) d(2) u(2) 0 . . . 0 c(2)
0 l(2) d(3) u(3) 0. . . 0 c(3)
0 0 l(3) d(4) u(4) 0 . 0 c(4)
.
.
0 . . 0 l(n− 3) d(n− 2) u(n− 2) c(n− 2)
0 . . 0 0 l(n− 2) d(n− 1) c(n− 1)
r(1) r(2) r(3) r(4) . . r(n− 1) d(n)


Definition: An arrow matrix A is strictly diagonally dominant if for ev-
ery row, the magnitude of the diagonal entry is larger than the sum of the
magnitude of all the other non-diagonal entries in that row, i.e.,

|d(n− 1) > |l(i− 1)|+ |u(i+ 1)|+ |c(i)| ∀ i = 1, 2, ..., n− 2

|d(n− 1)| > |l(n− 2)|+ |c(n− 1)| and |d(n)| > |r(1)|+ |r(2)|+ ...+ |r(n− 1)|

(As such, the matrix A will satisfy the principal minor property, and the naive
Gauss reduction is successfully applicable on A, without need for pivoting.)
Let A be a strictly diagonally dominant arrow matrix where:
- d = [d(1), ..., d(n)] is a vector of length (n) representing the main diagonal
of A.

© 2014 by Taylor & Francis Group, LLC

118 Introduction to Numerical Analysis and Scientific Computing

- u = [u(1), ..., u(n−2)] is a vector of length (n-2), and [u(1), ..., u(n−2), c(n−
1)] represents the first upper diagonal of A.
- l = [l(1), ..., l(n−2)] is a vector of length (n-2), and [l(1), ..., l(n−2), r(n−1)]
represents the first lower diagonal of A.
- c = [c(1), ..., c(n − 1)] is a vector of length (n-1), and c = [c(1), ..., c(n −
1), d(n)] represents the last column of A.
- r = [r(1), ..., r(n − 1)] is a vector of length (n-1), and r = [r(1), ..., r(n −
1), d(n)] represents the last row of A.

1. Write a MATLAB

function [d1,u1,l1,c1,r1]=NaiveGaussArrow(d,u,l,c,r)

that takes as input the 5 vectors defined above representing A. This
function performs naive Gauss reduction on the matrix A and returns
at the end of the process, the modified vectors: d1, u1, l1, c1, r1

(including the multipliers.)
Your function should neither use the built-in MATLAB function that fac-
torizes A into the product of L and U , nor use the general code for naive
Gauss reduction. Your code should be designed for arrow matrices only,
and should use the least number of flops.

2. Write a MATLAB

function[x]=RowBackwardArrow(d,u,c,b)

that takes as input 3 vectors as defined above, representing an invert-
ible nearly bi-diagonal upper triangular square matrix U of size n (dis-
played below) and a column vector b of length n. This function performs
row-oriented backward substitution to solve the system Ux = b, using
the least number of flops. Your code should be designed for nearly bi-
diagonal upper triangular matrices only and should use the least number
of flops.

U =



d(1) u(1) 0 . . . 0 c(1)
0 d(2) u(2) 0 . . 0 c(2)
0 0 d(3) u(3) 0 . 0 c(3)
.
.
0 . . 0 d(n− 2) u(n− 2) c(n− 2)
0 0 d(n− 1) c(n− 1)
0 0 d(n)


3. Write a MATLAB

function [x] = RowForwardArrow(d, l, r, b)

that takes as input 3 vectors as defined above, representing an invertible
nearly bi-diagonal lower triangular square matrix L of size n (displayed
below) and a column vector b of length n. This function performs row-
oriented forward substitution to solve the system Lx = b, using the least

© 2014 by Taylor & Francis Group, LLC

Solving Systems of Linear Equations by Gaussian Elimination 119

number of flops. Your code should be designed for nearly bi-diagonal
lower triangular matrices only and should use the least number of flops.

L =



d(1) 0 0
l(1) d(2) 0 0 . . . 0
0 l(2) d(3) 0 . . . 0
.
.
0 . . . 0 l(n− 2) d(n− 1) 0
r(1) r(2) r(n− 1) d(n)


4. Write a MATLAB

function [B] = InverseArrow((d, u, l, c, r)

that takes as input the 5 vectors defined above representing an invert-
ible arrow matrix A, and outputs B, the inverse of A, using the LU -
decomposition of A. Your function should call for the previous functions
programmed in parts 1, 2 and 3.

5. Test each of your functions above for 2 different arrow strictly diagonally
dominant matrices A, with n ≥ 6, and save the results in a separate
document.
Call for previous functions when needed.
Do not check validity of the inputs.

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

Chapter 4

Polynomial Interpolation and Splines
Fitting

4.1 Definition of Interpolation . 121
4.2 General Lagrange Polynomial Interpolation . 122
4.3 Recurrence Formulae . 125

4.3.1 Neville’s Formula . 125
4.3.2 Newton’s Form for the Interpolation Polynomial 127
4.3.3 Construction of Divided Differences and Implementation of New-
ton’s Formula . 129

4.4 Equally Spaced Data: Difference Operators . 133
4.5 Errors in Polynomial Interpolation . 136
4.6 Local Interpolation: Spline Functions . 139

4.6.1 Linear Spline Interpolation . 139
4.6.2 Quadratic Spline Interpolation . 141
4.6.3 Cubic Spline Interpolation . 144
4.6.4 Solving a Tridiagonal System . 150
4.6.5 Errors in Spline Interpolation . 151

4.7 Concluding Remarks . 153
4.8 Exercises . 154
4.9 Computer Projects . 161

4.1 Definition of Interpolation

Consider a set Dn of n+ 1 data points in the (x, y) plane:

Dn = {(xi, yi)| i = 0, 1 ..., n; n ∈ N with xi 6= xj for i 6= j}. (4.1)

We assume that Dn represents partially the values of a function y = f(x), i.e.,

f(xi) = yi ∀ i = 0, 1 ..., n (4.2)

Our basic objective in this chapter is to construct a continuous function r(x)
that “represents” f(x) (or the empirical law f(x) behind the set of data Dn).
Thus r(x) would represent f(x) for all x, in particular for x 6∈ the set of nodes
{x0, x1, ..., xn}. Such a function r(x) is said to interpolate the set of data
Dn if it satisfies the interpolation conditions:

r(xi) = yi ∀ i = 0, 1 ..., n (4.3)

121

© 2014 by Taylor & Francis Group, LLC

122 Introduction to Numerical Analysis and Scientific Computing

i.e., r(x) fits the function f(x) at the nodes {xi}, .
Several kinds of interpolation may be considered by choosing r(x) to be a poly-
nomial function, a rational function or even a trigonometric one. The most
natural is to consider polynomial or piecewise polynomial interpolation (spline
functions), as polynomial functions are the simplest in reproducing the basic
arithmetic (floating-point) operations of addition, subtraction, multiplication
and division {+,−,×,÷}. Consistently, we only analyze in this chapter poly-
nomial and spline interpolations. Such type of interpolation is referred to
as Lagrange interpolation.

4.2 General Lagrange Polynomial Interpolation

For simplicity, we assume that the set of data Dn is given as a natural
increasing sequence of x-values, i.e.,

x0 < x1 < ... < xn.

Let also hi = xi−xi−1, ∀i ≥ 1. We state now the basic Lagrange interpolation
theorem.

Theorem 4.1 There exists a unique polynomial of degree less than or equal
to n:

pn(x) = p01...n(x)

interpolating Dn, i.e., such that pn(xi) = yi, ∀i = 0, 1, ..., n.

Proof. The proof of this theorem is based on the Lagrangian cardinal basis
associated with Dn that is given by:

Ln = {li(x) : 0 ≤ i ≤ n}

where the cardinal functions li are special polynomials of degree exactly n
in Pn (Pn being the set of all polynomials of degree less than or equal to n).
They are defined as follows, ∀i = 0, ..., n:

li(x) =

∏
0≤j 6=i≤n (x− xj)∏
0≤j 6=i≤n (xi − xj)

=
(x− x0)(x− x1)...(x− xi−1)(x− xi+1)...(x− xn)

(xi − x0)(xi − x1)...(xi − xi−1)(xi − xi+1)...(xi − xn)

(4.4)
Once the cardinal functions (4.4) are available, we can interpolate any function
f using Lagrange form of the interpolation polynomial:

p01...n(x) =

n∑
i=0

li(x)f(xi). (4.5)

Obviously, the following properties are satisfied by a Lagrangian basis func-
tion, ∀i, j = 0, 1, . . . , n:

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 123

- li(xj) = δij =

{
0 if i 6= j
1 if i = j

- p01...n(xi) = yi

The definition of the Lagrange polynomial above is enough to establish the
existence part of Theorem 4.1.
As for obtaining uniqueness of such a polynomial p01...n, we proceed by contra-
diction by supposing the existence of another polynomial q(x) ∈ Pn, claiming
to accomplish what p(x) does; that is q(x) satisfies as well the interpolation
conditions q(xi) = yi for 0 ≤ i ≤ n. The polynomial:

(p01...n(x)− q(x))

is then of degree at most n, and takes on the value 0 at all nodes
x0, x1, . . . , xn. Recall however that a non-zero polynomial of degree n can
have at most n roots, implying that (p01...n(x) − q(x)) = 0. One con-
cludes therefore that p01...n(x) = q(x)∀x, which establishes the uniqueness
of p01...n(x).

Remark 4.1 It is obvious from equation (4.5) that:

p01...n(x) = pi0i1...in(x)

for any permutation {i0, i1, ..., in} of the set of indices {0, 1, ..., n}.

Example 4.1 Write out the cardinal functions and the corresponding La-
grange interpolating polynomial based on the following data:

D2 = { (1/4,−1), (1/3, 2), (1, 7)}

Using equation (4.4), we have:

l0(x) =
(x− 1

3)(x− 1)

(1
4 −

1
3)(1

4 − 1)
= 16(x− 1

3
)(x− 1)

l1(x) =
(x− 1

4)(x− 1)

(1
3 −

1
4)(1

3 − 1)
= −18(x− 1

4
)(x− 1)

l2(x) =
(x− 1

3)(x− 1
4)

(1− 1
3)(1− 1

4)
= 2(x− 1

3
)(x− 1

4
)

The interpolating polynomial in Lagrange’s form is therefore given by:

p012(x) = −36(x−1

4
)(x−1)−16(x−1

3
)(x−1)+14(x−1

3
)(x−1

4
) = −38x2+

349

6
x−79

6

This form of the polynomial might be useful in computing f(x) in the vicinity
of the nodes 1/3, 1/4, 1.

© 2014 by Taylor & Francis Group, LLC

124 Introduction to Numerical Analysis and Scientific Computing

Example 4.2 Consider the following table of data associated with the func-
tion f(x) = ln(x).

i xi yi

0 1.0 0
1 1.5 0.17609
2 2.0 0.30103
3 3.0 0.47712
4 3.5 0.54407
5 4.0 0.60206

Use Lagrange polynomials of orders 1 then 2 to approximate f(1.2), noting
that the exact value is ln(1.2) = 0.0791812460476480.

- Linear interpolation based on the points {x0, x1}= {1.0, 1.5}, where
l0(.) and l1(.) ∈ P1. Using (4.5), one has:

p01(x) = y0l0(x) + y1l1(x) = 0
x− 1.5

1.0− 1.5
+ 0.17609

x− 1.0

1.5− 1.0

Thus p01(1.2) = 0.070436, and the relative error in this approximation
is 6.136716× 10−1

- Quadratic interpolation based on the points {1.0, 1.5, 2.0}, where
l0(.), l1(.) and l2(.) ∈ P2.

p012(x) = y0l0(x) + y1l1(x) + y2l2(x) = 0
(x− 1.5)(x− 2)

(1.0− 1.5)(1.0− 2)
+

+0.17609
(x− 1.0)(x− 2)

(1.5− 1.0)(1.5− 2)
+ 0.30103

(x− 1.0)(x− 1.5)

(2− 1.0)(2− 1.5)

Thus p012(1.2) = 0.076574, and the relative error is now 3.292757×10−2.

Remark 4.2 Note that Lagrange’s formula is not computationally practical
in the sense that computing p01...k(x), with k < n, cannot be obtained from
p01...k−1(x). The cardinal functions of the latter are polynomials of degree
exactly k − 1 in Pk−1, while those of the former are polynomials of degree
exactly k in Pk. Thus, after computing the Lagrange cardinal functions for
p01...k−1(x), one has to compute a totally distinct set of cardinal functions for
p01...k(x).

This motivates one to look for recurrence formulae to the Lagrange interpo-
lating polynomial.

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 125

4.3 Recurrence Formulae

These recurrence formulae are obtained through relations between two
consecutive-order interpolation polynomials, specifically and for k ≥ 1:

• Consider first p012..k ∈ Pk and p012..k−1 ∈ Pk−1. As

p012..k(xi)− p012..k−1(xi) = 0, ∀ i = 0, 1, ..., k − 1

This implies that:

p012..k(x)− p012..k−1(x) = C(x− x0)(x− x1)...(x− xk−1) (4.6)

Note that C is a constant as the right hand side polynomial is exactly
of degree k.

• In a similar way considering now p012..k ∈ Pk and p12..k ∈ Pk−1, one
obtains:

p012..k(x)− p12..k(x) = C
′
(x− x1)...(x− xk−1)(x− xk). (4.7)

It is clear that C = C
′

as both constants are the coefficient of xk in
p012..k.

(4.6) and (4.7) constitute the basis for Neville’s and Newton’s recurrence for-
mulae, as shown hereafter.

4.3.1 Neville’s Formula

Given that C = C
′
, the algebraic operation:

(x− xk)×(4.6) −(x− x0)×(4.7)

yields:

(x0 − xk)p01...k−1 k(x) = (x− xk)p01...k−1(x)− (x− x0)p12...k−1 k(x).

Hence one reaches Neville’s formula (also called Aitken-Neville’s), given by:

p01...k−1 k(x) =
(x− x0)p12...k−1 k(x)− (x− xk)p012...k−1(x)

xk − x0
, k ≥ 1. (4.8)

A more general Neville’s recurrence formulae can be concluded. Specifi-
cally, for any i ∈ {0, 1, ..., n}:

• Base statement: pi(x) = yi, i = 0, 1, ..., n

© 2014 by Taylor & Francis Group, LLC

126 Introduction to Numerical Analysis and Scientific Computing

i xi pi(x) pi,i+1(x) pi,i+1,i+2(x) · · · pi,i+1,...,i+n(x)
0 x0 p0(x)
1 x1 p1(x) p0,1(x)
2 x2 p2(x) p1,2(x) p0,1,2(x)
3 x3 p3(x) p2,3(x) p1,2,3(x)
4 x4 p4(x) p3,4(x) p2,3,4(x) ...
...
n xn pn(x) pn−1,n(x) pn−2,n−1,n(x) ... p0,1,...,n(x)

TABLE 4.1: Neville’s array constructing Lagrange interpolation polynomials

• Recurrence statement:

pi i+1 ... i+k(x) =
(x− xi)pi+1 i+2... i+k(x)− (x− xi+k)pi i+1 ... i+k−1(x)

xi+k − xi
,

(4.9)
with

0 ≤ i < i+ k ≤ n.

Based on the set of data Dn in (4.1) and using the formulas above repeat-
edly, we can create an array of interpolating polynomials ∈ Pn, where each
successive polynomial can be determined from 2 adjacent polynomials in the
previous column, as is shown in Table 4.1. For example,

p01(x) =
(x− x0)p1(x)− (x− x1)p0(x)

x1 − x0

p123 =
(x− x1)p23(x)− (x− x3)p12(x)

x3 − x1

Remark 4.3 Neville’s recurrence expressions of the interpolating polynomial
can be easily programmed. The consequent algorithms can be written either in
a recursive or iterative form.

In what follows, we write a recursive algorithm for Neville’s formula leaving
it as an exercise to transform it into an iterative one.

Algorithm 4.1 Algorithm for Neville’s Formula(Recursive Version)

function [z]= Neville(x, y, s)

% Input data vectors x=[x1,x2,...,xk] and y=[y1,y2,...,yk]

% s : value (or vector) at which we seek the interpolation

% Output z=p_{12...k}(s)=p(s)

k = length(x);

if k=1

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 127

z=y;

% z1=p_{12...(k-1)}(s) ; z2=p_{2...k}(s)

% z= [(s-x1)*z2 - (s-xk)*z1] / (xk-x1)

else

z1= Neville(x(1:k-1), y(1:k-1) , s);

z2= Neville(x(2:k), y(2:k) , s);

z= ((s-x(1))*z2 - (s-x(k))*z1)/(x(k)-x(1));

end

4.3.2 Newton’s Form for the Interpolation Polynomial

As for Neville’s formula, we proceed with (4.6) by rewriting it in a more
general recurrence form as follows:

pi i+1...,i+k(x) = pi i+1...i+k−1(x) + C(x− xi)...(x− xi+k−1), (4.10)

with

0 ≤ i < i+ k ≤ n.

Newton’s formula is obtained by determining a proper expression for the con-
stant C as a function of the data Dk = {(xi, yi)|i = 0, 1, ..., k}. Note that such
constant can be computed by setting x = xi+k in (4.10), so that:

yi+k = pi i+1...i+k−1(xi+k) + C(xi+k − xi)...(xi+k − xi+k−1),

and therefore:

C = C(xi, xi+1, ..., xi+k; yi, yi+1, ..., yi+k) =
yi+k − pi i+1...i+k−1(xi+k)

(xi+k − xi)...(xi+k − xi+k−1)
.

For k = 1, this gives:

C = C(xi, xi+1; yi, yi+1) =
yi+1 − yi
xi+1 − xi

. (4.11)

Define then

[xi, xi+1] =
yi+1 − yi
xi+1 − xi

as the first order divided difference associated with {xi, xi+1}, so that (4.10)
is expressed as follows:

pi,i+1(x) = pi(x) + [xi, xi+1](x− xi) (4.12)

which is Newton’s formula of order 1. More generally, we may define divided
differences of any order k ≥ 1, through a recurrence process as follows:

© 2014 by Taylor & Francis Group, LLC

128 Introduction to Numerical Analysis and Scientific Computing

Definition 1 Given the set of data

Dn = {(xi, yi)|i = 0, 1, ..., n}, xi 6= xj for i 6= j.

Let [xi] = yi, i = 0, 1, ..., n. Then, for 0 ≤ i < i+ k ≤ n, the kth order divided
difference is given through the recurrence formula:

[xi, xi+1, ..., xi+k] =
[xi+1, ..., xi+k]− [xi, xi+1, ..., xi+k−1]

xi+k − xi
. (4.13)

Consequently, we prove that the constant C in (4.10) is a kth order divided
difference. This is done in the following proposition.

Theorem 4.2 Let 0 ≤ i < i+ k ≤ n. Let

pi i+1...i+k(x) = pi i+1...i+k−1(x) + C(x− xi)...(x− xi+k−1),

is the interpolating polynomial based on the nodes {xi, ..., xi+k}, as defined in
(4.6). Then, the constant C is the kth order divided difference

C = [xi, xi+1, ..., xi+k] =
[xi+1, ..., xi+k]− [xi, xi+1, ..., xi+k−1]

xi+k − xi

Proof. To obtain this result we use a mathematical induction process on k.
Clearly, (4.12) indicates that the result is true for k = 1.
Assuming now that the proposition is correct for all j ≤ k − 1 with i + j <
n, then, one writes on the basis of the induction hypothesis for j = k − 1,
successively:

pi...i+k−1(x) = pi...i+k−2(x) + [xi, xi+1, ...xi+k−1](x− xi)...(x− xi+k−2)

where [xi, xi+1, ...xi+k−1] is the coefficient of xk−1 in the polynomial
pi...i+k−1(x) and

pi+1...i+k(x) = pi+1, ..., i+k−1(x) + [xi+1, ..., xi+k](x− xi+1)...(x− xi+k−1)

where [xi+1, ..., xi+k] is the coefficient of xk−1 in the polynomial pi+1...i+k(x).
Using now Neville’s formula, one has:

pi...i+k(x) =
(x− xi)pi+1...i+k(x)− (x− xi+k)pi...i+k−1(x)

xi+k − xi
.

By equating the coefficients of xk on both sides of this identity one has:

C =
[xi+1, ..., xi+k−1, xi+k]− [xi, xi+1, ..., , xi+k−1]

xi+k − xi
,

which is the targeted result of the theorem.

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 129

As a consequence of this theorem, we may write now Newton’s formula for
Lagrange interpolating polynomial as follows: for i < i+ k ≤ n:

pi i+1...i+k−1 i+k(x) = yi+...+[xi, xi+1, ..., xi+k](x−xi)...(x−xi+k−1). (4.14)

or equivalently as:

pi i+1...i+k−1 i+k(x) = yi +
k∑
j=1

[xi, ..., xi+j](x− xi)...(x− xi+j−1) (4.15)

=
∑k
j=0[xi, ..., xi+j]

∏i−1
j=0(x− xi+j)

More specifically:

p01...n(x) = y0 + [x0, x1](x− x0) + [x0, x1, x2](x− x0)(x− x1) + ...

...+ [x0, x1, x2, ..., xn](x− x0)(x− x1)...(x− xn−1)

Remark 4.4 Note that, as expressed in (4.10), Newton’s formula of the inter-
polating polynomial is built up in steps, in the sense that once pi i+1...i+k−1(x)
is found reproducing part of the data, determining pi i+1...i+k(x), necessitates
the computation of one new divide difference coefficient only.

4.3.3 Construction of Divided Differences and Implementa-
tion of Newton’s Formula

Let {i0, i1, . . . , ik} be any permutation of the set of integers {i, i+1, . . . , i+
k}. Based on the uniqueness property of the interpolating polynomials:

pi i+1...i+k−1 i+k(x) = pi0 i1...ik−1 ik(x)

and consequently the kth order divided differences [xi, xi+1, ..., xi+k] and
[xi0 , xi1 ..., xik−1

, xik] representing respectively the (same) coefficient of xk in
the two polynomials above, are equal. This leads to the following invariance
property satisfied by divided differences:

Theorem 4.3 Let {i0, i1, . . . , ik} of be any permutation of the set of integers
{i, i+ 1, . . . , i+ k}. Then:

[xi, xi+1, . . . , xi+k] = [xi0 , xi1 , . . . , xik]

Obviously, use of Newton’s formula necessitates the computation of divided
differences. As such, constructing divided differences tables associated with
a set of data Dn = {(xi, yi)|i = 0, 1, ..., n} is a preliminary step to any im-
plementation of Newton’s formula. The construction of divided differences is
shown in Table 4.2 for the case n = 5. The following MATLAB code takes
as input 2 vectors x and y of equal length and returns the divided difference
table of the first (n-1)-order divided differences, as a lower triangular matrix,
using the MATLAB diff operator.

© 2014 by Taylor & Francis Group, LLC

130 Introduction to Numerical Analysis and Scientific Computing

i xi yi [., .] [., ., .] [., ., ., .] [., ., ., ., .] [., ., ., ., ., .]
0 x0 y0

[x0, x1]
1 x1 y1 [x0, x1, x2]

[x1, x2] [x0, x1, x2, x3]
2 x2 y2 [x1, x2, x3] [x0, x1, x2, x3, x4]

[x2, x3] [x1, x2, x3, x4] [x0, x1, x2, x3, x4, x5]
3 x3 y3 [x2, x3, x4] [x1, x2, x3, x4, x5]

[x3, x4] [x2, x3, x4, x5]
4 x4 y4 [x3, x4, x5]

[x4, x5]
5 x5 y5

TABLE 4.2: Divided difference table for n = 5

Algorithm 4.2 Constructing a Divided Difference Table

function D = DivDiffTable(x,y)

% D is a lower Triangular matrix

% If x=[x(1),x(2),...,x(n)] is a vector of length n, then

% diff(x)=[(x(2)-x(1)), (x(3)-x(2)),....,(x(n)-x(n-1))]

% is a vector of length (n-1)

n=length(x) ;

m=length(y) ;

if m==n

D=zeros(n,n) ;

D(1:n, 1) = y(1:n) ;

Y= D(1:n, 1) ;

for j=2: n

V1=x(1:n-j+1) ; V2=x(j:n) ;

D(j:n, j)= (diff(Y) ./ (V2-V1)’) ;

Y=D(j:n, j) ;

end

end

Example 4.3 Create the divided difference table based on the set of data of
Example 4.2 representing the function f(x) = ln(x) where:

D5 = {(1, 0) , (1.5, 0.17609) , (2.0, 0.30103) , (3, 0.47712) , (3.5, 0.54407) , (4, 0.60206)}

Let us consider now approximations of f(x) for values of x first at the top of
Table 4.3, for example x = 1.2, then at the middle of the table, as x = 2.5.
(Note that, in general, one can prove that the approximation-error is smaller
when x is centered with respect to the nodes).

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 131

i xi yi [., .] [., ., .] [., ., ., .] [., ., ., ., .] [., ., ., ., ., .]
0 1.0 0

0.35218
1 1.5 0.17609 −0.1023

0.24988 0.02655
2 2.0 0.30103 −0.0492 −0.006404

0.17609 0.01054 0.001411
3 3.0 0.47712 −0.02813 −0.002172

0.13390 0.00511
4 3.5 0.54407 −0.01792

0.11598
5 4.0 0.60206

TABLE 4.3: A divided difference table for f(x) = ln(x) for unequally sized
data x = {1.0, 1.5, 2.0, 3.0, 3.5, 4.0}

p...(1.2) Value Relative error
p01(1.2) 0.070436 1.10446× 10−1

p012(1.2) 0.076574 3.2928× 10−2

p0123(1.2) 0.0778484 1.6833× 10−2

p01234(1.2) 0.07840171 9.845× 10−3

p012345(1.2) 0.0786821 6.30384× 10−3

TABLE 4.4: Errors in polynomial interpolation for f(x) = ln(1.2)

1. The first interpolating polynomials of degrees 1, 2, 3, 4 and 5 are suc-
cessively as follows:

• p01(x) = 0.35218(x− 1),

• p012(x) = p01(x)− 0.1023(x− 1)(x− 1.5),

• p0123(x) = p012(x) + 0.02655(x− 1)(x− 1.5)(x− 2),

• p01234(x) = p0123(x)− 0.006404(x− 1)(x− 1.5)(x− 2)(x− 3),

• p012345(x) = p01234(x) + 0.001411(x− 1)(x− 1.5)(x− 2)(x− 3)(x−
3.5).

As a result, approximations to ln(1.2) = 0.0791812460476248 using:

p01(1.2), p012(1.2), p0123(1.2), p01234(1.2) and p012345(1.2)

are displayed in Table 4.4.

2. To get approximations to f(2.5), using Theorem 4.3), we obtain succes-
sively linear, quadratic and cubic polynomials as follows:

© 2014 by Taylor & Francis Group, LLC

132 Introduction to Numerical Analysis and Scientific Computing

p...(2.5) Value Relative error
p23(2.5) 0.389075 2.227725× 10−2

p234(2.5) 0.3961067 4.6070814× 10−3

p231(2.5) 0.4013733 8.62774435× 10−3

p2345(2.5) 0.3973825 1.4009867× 10−3

p2341(2.5) 0.39874 2.0103315× 10−3

TABLE 4.5: Errors in polynomial interpolation for f(x) = ln(2.5)

• p23(x) = y2 + [x2, x3](x− x2) = 0.30103 + 0.17609(x− 2)

• p231(x) = p23(x) + [x2, x3, x1](x− x2)(x− x3)
= p23(x)+[x1, x2, x3](x−x2)(x−x3) = p23(x)−0.0492(x−2)(x−3)

• p2314(x) = p231(x) + [x2, x3, x1, x4](x− x2)(x− x3)(x− x1)
= p231(x) + [x1, x2, x3, x4](x− x2)(x− x3)(x− x1) = p231(x) +
0.01054(x− 2)(x− 3)(x− 1.5)

• p2310(x) = p231(x) + [x2, x3, x1, x0](x− x2)(x− x3)(x− x1)
= p231(x) + [x0, x1, x2, x3](x− x2)(x− x3)(x− x1) = p231(x) +
0.02655(x− 2)(x− 3)(x− 1.5)

Another alternative, starting with p23(x), would be:

• p234(x) = p23(x) + [x2, x3, x4](x− x2)(x− x3) = p23(x)−
0.02813(x− 2)(x− 3)

• p2345(x) = p234(x)+[x2, x3, x4, x5](x−x2)(x−x3)(x−x4)p234(x)+
0.00511(x− 2)(x− 3)(x− 3.5)

• p2341(x) = p234(x) + [x2, x3, x4, x1](x− x2)(x− x3)(x− x4)
= p234(x) + [x1, x2, x3, x4](x − x2)(x − x3)(x − x4) = p234(x) −
0.002172(x− 2)(x− 3)(x− 3.5)

This process can be carried through to obtain higher order interpolation
polynomials. Table 4.5 gives the results obtained for the approximation
of ln(2.5) = 0.39794001.

Hence, it appears clear that increasing the degree of the interpolation poly-
nomial does not improve much the approximation of the exact value of f(x).
Using Algorithm 4.2, we may now write an algorithm that implements New-
ton’s formula.

Algorithm 4.3 Program for Newton’s Formula

function p=NewtonForm(x,y,X)

%Input: two equally sized vectors x and y of length k

% One vector X of length n

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 133

%Output: p(X) based on Newton interpolation formula on the data (x,y)

D=DivDiffTable(x,y);

k=length(x);%(equal to length of y)

n=length(X);X=X(:);

term=ones(n,1);

p=zeros(n,1);

for i=1:k

p=p+D(i,i)*term;

term=term.*(X-x(i));

end

To conclude on recurrence formulae for the Lagrange interpolation polyno-
mial, a rule of thumb would be to use Neville’s formula in case of computer
implementation as it takes only one algorithm to program (Algorithm 4.1). On
the other hand, Newton’s formula requires writing 2 programs: one for divided
differences (Algorithm 4.2) before developing Algorithm 4.3 for a straightfor-
ward evaluation of the interpolation polynomial.

4.4 Equally Spaced Data: Difference Operators

Consider now the set of data Dn with equidistant x nodes, i.e.,

xi+1 − xi = h, ∀i = 0, 1, ..., n− 1.

In this case, we can compute divided differences associated with Dn by using
the “difference functions” or “difference operators,” based on the y data
only. Specifically, we make the following definitions:

Definition 4.1 Let Y = [y0, y1, ..., yn], then:

1. ∆1Y = [∆y0,∆y1, ...,∆yn−1] is the vector of n first order differences
associated with Y , where ∆yi = yi+1 − yi for i = 0, 1..., n− 1.

2. By recurrence, for k = 2, 3, ...n, we may then define the vector of
kth order differences ∆kY = [∆ky0,∆

ky1, ...,∆
kyn−k], where ∆kyi =

∆k−1yi+1 −∆k−1yi for i = 0, 1, ..., n− k.

Difference operators are linear in the sense that:

∆k(Y + Z) = ∆kY + ∆kZ and ∆k(aY) = a∆kY, a ∈ R, k = 2, 3, ...n.

Besides, one easily obtains a relation between divided differences and differ-
ences of all orders as shown below.

© 2014 by Taylor & Francis Group, LLC

134 Introduction to Numerical Analysis and Scientific Computing

Theorem 4.4 Let Dn be a set of data as defined in (4.1), where the x-nodes
are equally spaced with xi+1−xi = h, ∀i = 0, 1, ..., n− 1. Then for all k where
1 ≤ k ≤ with i+ k ≤ n:

[xi, xi+1, ..., xi+k] =
∆kyi
hkk!

(4.16)

Proof. The proof is done by induction on k. After verifying the result for
k = 1, assume that it is true for 1, ..., k − 1, i.e.,

[xi, xi+1, ..., xi+k−1] =
∆k−1yi

hk−1(k − 1)!
.

Since,

[xi, xi+1, ..., xi+k] =
[xi+1, ..., xi+k]− [xi, xi+1, ..., xi+k−1]

(xi+k − xi)
,

then:

[xi, xi+1, ..., xi+k] =
∆k−1yi+1 −∆k−1yi

hk−1(k − 1)!(xi+k − xi)
=

∆k−1yi+1 −∆k−1yi
hk−1(k − 1)! kh

.

that reaches the required result.

Based on the theorem above and in case of equally spaced data, Newton’s
interpolating polynomial is expressed as follows::

p(x) = y0+
∆y0

1!h
(x−x0)+

∆2y0

2!h2
(x−x0)(x−x1)+· · ·+∆ny0

n!hn
(x−x0)(x−x1) . . . (x−xn−1)

(4.17)
where it is understood that p(x) = p012...n(x).

Remark 4.5 Note the resemblance of this formula with that of Taylor’s for-
mula for a function f(x) where the nth degree polynomial representing f(x) is
given by:

q(x) = f(x0) + f
′
(x0)(x− x0) ++

f (n)(x0)

n!
(x− x0)n

This remark will be exploited in Chapter 5 when approximating derivatives

such as f (k)(x0) by kth order differences ∆kf(x0)
hn .

The result of the above theorem allows us therefore to compute divided differ-
ence tables by simply first computing differences as displayed in Table 4.6.
The algorithm of the difference table for the first differences up to order (n−1)
is implemented as follows:

Algorithm 4.4 Constructing a Difference Table

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 135

i xi yi ∆ ∆2 · · · ∆n

0 x0 y0

∆y0 = y1 − y0

...
...

1 x1 y1 ∆2y0 = ∆y1 −∆y0

∆y1 = y2 − y1

2 x2 y2 ∆2y1 = ∆y2 −∆y1

∆y2 = y3 − y2

3 x3 y3

...
... ∆ny0

...
...

...
...

n− 2 xn−2 yn−2

∆yn−2 = yn−1 − yn−2

n− 1 xn−1 yn−1 ∆2yn−2 = ∆yn−1 −∆yn−2

∆yn−1 = yn − yn−1

n xn yn
...

...

TABLE 4.6: A difference table for equally spaced x data

function D = DiffTable(x,y)

% D is a lower Triangular matrix

n=length(x) ;

m=length(y) ;

if m==n

D=zeros(n,n) ;

D(:,1) = y ;

for j=2:n

D(j:n, j)= diff(D(j-1:n, j-1));

end

end

Example 4.4 The following set of data D4 is associated with 0-th order
Bessel’s function of the first kind.

i xi yi

0 1.0 0.7651977
1 1.3 0.6200860
2 1.6 0.4554022
3 1.9 0.2818186
4 2.2 0.1103623

Since the x-data are equally space with h = 0.3, the differences Table 4.7
can therefore be easily constructed out of this data. Using Table 4.7, we may

© 2014 by Taylor & Francis Group, LLC

136 Introduction to Numerical Analysis and Scientific Computing

i xi yi ∆ ∆2 ∆3 ∆4

0 1.0 0.7651977
−0.1451117

1 1.3 0.6200860 −0.0195721
−0.1646838 0.0106723

2 1.6 0.4554022 −0.0088998 0.0003548
−0.1735836 0.0110271

3 1.9 0.2818186 0.0021273
−0.1714563

4 2.2 0.1103623

TABLE 4.7: An example of a difference table for equally spaced x data

subsequently write any of the interpolation polynomials based on D4. For
example:

p234(x) = y2 + ∆y2
0.3 (x− x2) + ∆2y2

(0.3)22! (x− x2)(x− x3)

= 0.4554022− 0.1735836
0.3 (x− 1.6) + 0.0021273

(0.3)2 (x− 1.6)(x− 1.9)

p231(x) = p23(x)+[x2, x3, x1](x−x2)(x−x3) = p23(x)+[x1, x2, x3](x−x2)(x−
x3)

= p23(x) + ∆2y1
(0.3)22! (x− x2)(x− x3) = p23(x)− 0.0088998

(0.3)22! (x− 1.6)(1− 1.9)

4.5 Errors in Polynomial Interpolation

When a function f is approximated on an interval [a, b] = [x0, xn] by means
of an interpolating polynomial pn, it is naturally expected that the function
be well approximated at all intermediate points between the nodes, and that
as the number of nodes increases, this agreement will become more and more
accurate. Nevertheless, this expectation is incorrect.
A theoretical estimate of the error is derived in ([21], page 189) and leads to
the following result:

Theorem 4.5 Let f be a function in Cn+1[a, b], and pn the Lagrange poly-
nomial of degree at most n, that interpolates f based on the set of data Dn.
There exists some point c ∈ (a, b) such that the error function:

En(f(x)) = f(x)− pn(x) = wn(x)
f (n+1)(c)

(n+ 1)!
,

where wn(x) = (x− x0)(x− x1)....(x− xn), and x ∈ (a, b).

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 137

FIGURE 4.1: Runge counter example for non convergence of the interpola-
tion polynomial

However, such result does not lead to a convergence result in the sense of:

lim
n→∞

|f(x)− pn(x)| = 0, ∀x ∈ (a, b),

even if the function f possesses continuous derivatives of all orders in that
interval.

Example 4.5 A well-known counter example of this phenomenon is provided
by the Runge function

f(x) =
1

1 + x2

Let p01...n(x) be the polynomial that interpolates this function at n+1 equally
spaced nodes on the interval [−5,+5] for example, including the endpoints. It
is easy to verify the following contradictory results in Figure 4.1.

1. The curve representing p01...n(x) assumes negative values, which obvi-
ously f(x) does not have.

2. Adding more equally spaced nodes, leading to higher degree polynomials
worsens the situation. The graphs of the resulting polynomials have
wilder oscillations, especially near the endpoints of the interval, and the
error increases beyond all bounds as confirmed in the graph.

© 2014 by Taylor & Francis Group, LLC

138 Introduction to Numerical Analysis and Scientific Computing

Thus, in this case it can be shown that:

lim
n→∞

max
−5≤x≤+5

|f(x)− pn(x)| =∞.

This behavior is called the “Runge’s phenomenon.”

In a more advanced study of this topic [26], it is proved that the divergence
of the polynomials is often due to the fact that the nodes of interpolation
are equally spaced, which contrary to intuition, is usually a very poor and
inappropriate choice. Specifically, one can show that:

|wn(x)| ≤ n!
hn+1

4

and therefore

max
x
|f(x)− pn(x)| ≤ maxx |f (n+1)(x)|

4(n+ 1)
hn+1

If n → ∞, the order of magnitude of maxx |f (n+1)(x)| could outweigh the
nearly-zero order of hn+1/4(n+ 1).
In [26], numerical results are conducted in the case of the Runge function
confirming this hypothesis. More specifically, it is verified that

max
−5≤x≤+5

|f (22)(x)| = O(1019)

while the corresponding value of max wn(x)
(n+1)! = O(10−10)

A much better and more adequate choice of nodes leading to more accurate
results that help minimizing Runge’s phenomenon is obtained for example
with the set of Chebyshev nodes defined over the unit interval [−1,+1] by:

xi = cos[
2i− 1

2n
π] , 1 ≤ i ≤ n

(Note that these values are graphically obtained by projecting equally spaced
points on the unit circle, down on the unit interval [−1,+1]). More generally
over arbitrary interval [a, b] the coordinates of Chebyshev nodes are:

xi =
1

2
(a+ b) +

1

2
(b− a) cos[

2i− 1

2n
π]

It is possible then to prove that

lim
n→∞

|f(x)− pn(x)| = 0

This problem motivates the use of local piecewise polynomial interpolation.

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 139

4.6 Local Interpolation: Spline Functions

As the global approach of interpolating polynomials does not provide in
general a systematic and efficient way to approximate a function f(x) on the
basis of the data

Dn = {(xi, yi)|i = 0, 1, ...n, , x0 = a,< x1 < ... < xn−1 < xn = b},

we consider hereafter a local approach that considers approximating a func-
tion f(x) by spline functions. Such functions are piecewise polynomials
joined together with certain imposed continuity conditions, to which we will
refer as the imposed “smoothness conditions” of interpolation.
In the theory of splines, the interior points {xi}ni=0 at which the function
changes its expression are called the “nodes” or “knots” of the partition.
In this chapter, we analyze successively linear quadratic and cubic spline func-
tions interpolating Dn.

4.6.1 Linear Spline Interpolation

The simplest connection between two points is a line segment. A spline of
degree one or linear spline, is therefore a function that consists of linear
polynomial pieces joined together to achieve continuity of the polygonal curve
representing it. Its formal definition is given as follows:

Definition 4.2 A linear spline interpolating the data Dn is a function s(x)
such that:

1. si(x) = {s(x)|x∈[xi,xi+1]} is a polynomial of degree at most 1, i.e.,

si ∈ P1, ∀i = 0, 1, ..., n− 1.

2. s(x) is globally continuous on [a, b], (i.e., s ∈ C([a, b], the set of all
continuous functions on [a, b]).

3. s(x) satisfies the interpolation conditions: s(xi) = yi, ∀i = 0, 1, ..., n.

Note that there exists a unique function s(x) verifying these three criteria:
- To determine s(x), a total of 2n unknowns have to be evaluated as each of
the linear polynomials si(x) defined by the first criterion over the subinterval
[xi, xi+1] is determined by 2 parameters.
- The second and third criteria impose respectively continuity at the n − 1
interior nodes in addition to the n + 1 interpolation conditions, that add up
to a total of (n− 1) + (n+ 1) = 2n restrictions or “imposed smoothness con-
ditions.”
The number of unknown parameters being equal to the number of imposed

© 2014 by Taylor & Francis Group, LLC

140 Introduction to Numerical Analysis and Scientific Computing

conditions, the equations of the linear spline are uniquely determined.
We proceed directly to write them using Newton’s linear interpolating polyno-
mial form on each subinterval [xi, xi+1]. This gives in a straightforward way,
∀ i = 0, 1, ..., n− 1 :

si(x) = [xi] + [xi, xi+1](x− xi) = yi +
yi+1 − yi
xi+1 − xi

(x− xi) (4.18)

Clearly, by joining the linear pieces {si(x) |i = 0, 1, ...,−1n}, one obtains the
unique linear spline satisfying the definition above.

The implementation of the linear spline algorithm is as follows:

Algorithm 4.5 Linear Splines

function l = LinearSpline(x, y, r)

% Input: 2 vectors x and y of equal length, and a real number r

% Output: l= s(r): s=linear spline

n=length(x);

% seek i : x(i) < r < x(i+1)

i=max(find(x<r));

% compute l=s(r)=s_i(r)

l=y(i) + (y(i+1)-y(i)) / (x(i+1)-x(i)) * (r-x(i));

Example 4.6 Consider the set of data D4 = {(xi, yi = f(xi)) i = 0, 1, 2, 3, 4}
where

i xi yi
0 1.0 7.6
1 1.3 2.0
2 1.6 4.5
3 1.9 2.8
4 2.2 11

Determine the linear spline function interpolating D4, then interpolate f(1.4)

1. Given that si(x) = yi + yi+1−yi
xi+1−xi (x− xi):

s0(x) = y0 + y1−y0
x1−x0

(x− x0) = 7.6− 18.6(x− 1) ; 1.0 ≤ x ≤ 1.3

s1(x) = y1 + y2−y1
x2−x1

(x− x1) = 2 + 8.3(x− 1.3) ; 1.3 ≤ x ≤ 1.6

s2(x) = y2 + y3−y2
x3−x2

(x− x2) = 4.5− 5.6(x− 1.6) ; 1.6 ≤ x ≤ 1.9

s3(x) = y3 + y4−y3
x4−x3

(x− x3) = 2.8 + 27.3(x− 1.9) ; , 1.9 ≤ x ≤ 2.2

2. Since x1 < x = 1.4 < x2 ⇒ f(1.4) ≈ s1(1.4) = 2 + 8.3(1.4− 1.3) = 2.83

As confirmed by the graph, first order splines are not smooth functions, the
first derivative being discontinuous at each interior node. This deficiency is
overcome by looking at higher order degree splines.

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 141

4.6.2 Quadratic Spline Interpolation

We start by providing a definition for interpolating quadratic splines based
on the data Dn.

Definition 4.3 A quadratic spline interpolating the data Dn is a function
s(x) such that:

1. si(x) = {s(x)|x∈[xi,xi+1]}, is a polynomial of degree at most 2, i.e.,

si ∈ P2,∀i = 0, 1, ..., n− 1.

2. s(x) is globally of class C1, that is:

(a) s ∈ C([a, b]),

(b) s′ ∈ C([a, b]).

3. s(x) satisfies the interpolation conditions: s(xi) = yi, ∀i = 0, 1, ..., n.

In order to determine the equations of the interpolating quadratic spline, we
start by counting the number of unknown parameters and imposed smoothness
conditions from the definition.
- From the first criterion, each of the si(x) - being a quadratic polynomial -
is determined by 3 parameters. Hence, complete obtainment of s(x) requires
3n unknowns.
- The second and third criteria impose respectively continuity of s and s

′
at

the n− 1 interior nodes in addition to the n+ 1 interpolation conditions, that
add up to a total of 2(n− 1) + (n+ 1) = 3n− 1 restrictions.
Obviously, to obtain a unique determination of the interpolating quadratic
spline, there appears to be a deficit of one further constraint!
There is a variety of ways of providing an additional condition. For example,
one may impose specific values on s′(x0), such as:

s′(x0) = 0, (“natural quadratic spline”) (4.19)

or use the forward difference approximation formula to the derivative

s′(x0) = [x0, x1] =
y1 − y0

x1 − x0
≈ f ′(x0) (4.20)

Instead of deriving the quadratic spline through a system of 3n equations in
3n unknowns, a shorter way to proceed is by noting first that s

′
(x) is a linear

interpolating spline on the set of data D
′

n = {(xi, s′(xi)) |i = 0, 1, ..., n}. In
this view, introduce first the set of unknowns:

{zi = s′(xi), for i = 0, 1, ...n}

Obviously, it is enough to start first by writing the equation of s
′

i(x) followed
by an integration process.

© 2014 by Taylor & Francis Group, LLC

142 Introduction to Numerical Analysis and Scientific Computing

• On the subinterval [xi, xi+1]:

s′i(t) = zi + (
zi+1 − zi
xi+1 − xi

)(t− xi), ∀t ∈ [xi, xi+1], ∀i = 0, 1, ..n− 1.

• Integration of this last equation from xi to x : xi ≤ x ≤ xi+1, yields:

si(x) = yi + zi(x− xi) +
1

2
(
zi+1 − zi
xi+1 − xi

)(x− xi)2. (4.21)

• Imposing then the interpolation conditions si(xi+1) = yi+1, i =
0, 1, ...n− 1, provides a new set of n equations:

yi+1 = yi + zi(xi+1 − xi) + (
zi+1 − zi
xi+1 − xi

)
(xi+1 − xi)2

2

• Through algebraic simplification and letting hi+1 = xi+1 − xi, one ob-
tains:

yi+1 − yi
hi+1

=
zi+1 + zi

2
, i = 0, 1, ..., n− 1.

Obviously, to determine si(x), the values of the sequence {zi} should be com-
puted first. Given an arbitrary z0 chosen as suggested in equations (4.19) or
(4.20), the sequence {zi}ni=1 can be found from the recurrence relation:

zi+1 = −zi + 2[xi, xi+1], i = 0, 1, ..., n− 1, (4.22)

where [xi, xi+1], is the set of first order divided differences associated with the
data Dn. It suffices then to determine the equations of the quadratic spline
over the interval [a, b], from equation (4.21).

Algorithm 4.6 Algorithm for Quadratic Spline

function q = QuadraticSpline(x, y, r)

% Input: 2 vectors x and y of equal length, and a real number r

% Output: q= s(r): s= quadratic spline based on data x and y

n=length(x); z=zeros(1, n);

% compute z(1) (or set z(1)=0) then compute z(i), i=2,...,n

z(1)=(y(2)-y(1)) / (x(2)-x(1));

for i=1:n-1

z(i+1) = -z(i) + 2* (y(i+1)-y(i)) / (x(i+1)-x(i));

end

% seek i : x(i) < r < x(i+1) and compute q=s(r)=s_i(r)

i=max(find(x<r));

q=y(i) + z(i)*(r - x(i)) + (z(i+1)-z(i)) / (x(i+1)-x(i)) * ((r -x(i))^2 /2));

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 143

FIGURE 4.2: Natural quadratic spline approximation for f(x) = 3 cos(2x)

Example 4.7 Find the natural quadratic spline interpolant for the following
data:

D5 = {(−1, 2); (0, 1); (0.5, 0); (1, 1); (2, 2); (2.5, 3)}

Let z0 = 0. Using equation (4.21) recursively:

{zi}5i=0 = {0,−2,−2, 6,−4, 8}

From equation (4.22) the natural quadratic spline is given by:
s0(x) = −(x+ 1)2 + 2 ;−1.0 ≤ x ≤ 0
s1(x) = −2x+ 1 ; 0 ≤ x ≤ 0.5.
s2(x) = 8(x− 1

2)2 − 2(x− 1
2) ; 0.5 ≤ x ≤ 1.0

s3(x) = −5(x− 1)2 + 6(x− 1) + 1 ; 1.0 ≤ x ≤ 2.0
s4(x) = 12(x− 2)2 − 4(x− 2) + 2 ; 2.0 ≤ x ≤ 2.5

Remark 4.6 On the choice of the additional condition on z0.

When conducting numerical tests regarding the use of the natural spline con-
dition z0 = 0, it was found that such constraint provides a good quadratic
spline approximation results only in the case where the data {xi, yi} corre-
spond to a function f(x) for which f

′
(x0) = 0. This is shown in Figure 4.2 for

f(x) = 3 cos(2x). Otherwise, changing the additional condition from z0 = 0 to
z0 = [x0, x1] = y1−y0

x1−x0
proved to be an O(h) approximation to f

′
(x0), appears

to provide more accurate results. The next 2 figures attest to such facts for
the functions:

© 2014 by Taylor & Francis Group, LLC

144 Introduction to Numerical Analysis and Scientific Computing

FIGURE 4.3: Comparison of approximations between natural quadratic
spline and quadratic spline using z0 = y1−y0

x1−x0
for f(x) = x cos(x)− 3 sin(3x)

• f(x) = x cos(x)− 3 sin(3x), in Figure 4.3

• f(x) = 3 sin(2x), in Figure 4.4.

4.6.3 Cubic Spline Interpolation

In the previous two cases one notes the following:
- The polygonal lines representing linear splines lack smoothness as the slope
of the spline may change abruptly through each node.
- As for quadratic splines, the discontinuity is in the second derivative, and is
therefore not so evident; nevertheless, the curvature of the spline changes
abruptly through each node, and the curve may not be visually smooth
enough.
Cubic splines allow for smoother data fitting and they are most frequently
used in applications. It can be proved that cubic spline functions are among
the best interpolation functions that are available at an acceptable compu-
tational cost. In this case, we join cubic polynomials together in such a way
that the resulting spline function has its first and second derivatives continu-
ous everywhere in the interval [a, b]. At each interior node, 3 conditions will
be imposed, so that the graph of the function will look smoother than in the
case of linear and quadratic splines. Discontinuities of course may occur in the

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 145

FIGURE 4.4: Comparison of approximations between natural quadratic
spline and quadratic spline using z0 = y1−y0

x1−x0
for f(x) = 3 sin(2x)

third derivative, but these cannot be easily detected visually. Cubic splines are
formally defined as follows.

Definition 4.4 A cubic spline that interpolates the data Dn, is a function
s(x) such that:

1. si(x) = {s(x)|x∈[xi,xi+1]} is a polynomial of degree at most 3, i.e.,

si ∈ P 3 ∀i = 0, 1, ..., n− 1.

2. s(x) is globally of class C2, that is:

(a) s ∈ C([a, b]).

(b) s′ ∈ C([a, b]).

(c) s′′ ∈ C([a, b]).

3. s(x) satisfies the interpolation conditions: s(xi) = yi, ∀i = 0, 1, ..., n.

Following the same pattern as previously, and counting the number of un-
known parameters and imposed conditions from the definition, we note the
following:
- From the first criterion, each of the si(x) is determined by 4 parameters.
Hence, complete obtainment of s(x) requires 4n unknowns.

© 2014 by Taylor & Francis Group, LLC

146 Introduction to Numerical Analysis and Scientific Computing

- The second and third criteria impose now respectively 3(n − 1) continuity
conditions for s, s

′
and s

′′
at the interior nodes, in addition to the n + 1 in-

terpolation conditions.
Hence for a total of 4n unknowns, one has a total of 3(n− 1) +n+ 1 = 4n− 2
constraints. Obviously, to allow unique determination of the interpolating cu-
bic spline, there appears to be a deficit of two constraints!

These two supplementary conditions may be for example supplied as fol-
lows:

1. Letting s′′(x0) = s′′(xn) = 0, the spline is called a natural spline (or
free boundary.)

2. An alternative to the natural spline is to use:

s′′(x0) = 2[x0, x1, x2] ≈ f”(x0) and s′′(xn) = 2[xn−2, xn−1, xn] ≈ f”(xn)

3. Letting s′(x0) = f0 and s′(xn) = fn, the spline is called a clamped
spline. However, for this type of boundary condition to hold, it is nec-
essary to have the values of f ′(x0) and f ′(xn) (or at least an accurate
approximation.)

In this chapter, we will restrict our analysis to natural cubic splines only.
Instead of determining the solution of the problem through a system of 4n
equations in 4n unknowns, we note that s

′
(x) and s

′′
(x) are quadratic and

linear splines based respectively on the data sets D
′

n = {(xi, s′(xi)} and D
′′

n =
{(xi, s”(xi)}, where the unknowns:

{zi = s′(xi)|i = 0, 1, ..., n}

and

{wi = s′′(xi)|i = 0, 1, ..., n}

represent respectively the sets of slopes and moments at the nodes.
Obviously, we should proceed by first writing s”

i (x) on the interval [xi, xi+1]
followed by 2 successive integrations.

• On the subinterval [xi, xi+1]:

s
′′

i (t) = wi+
wi+1 − wi
xi+1 − xi

(t−xi), ∀t ∈ [xi, xi+1], ∀i = 0, 1, ..., n−1. (4.23)

• Integration of (4.23) from xi to x, xi ≤ x ≤ xi+1 yields:

s′i(x)−zi = wi(x−xi)+
wi+1 − wi
xi+1 − xi

(x− xi)2

2
, ∀x ∈ [xi, xi+1], ∀i = 0, 1, ..., n−1

(4.24)

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 147

• Imposing in (4.24) the conditions s′i(xi+1) = zi+1 at internal nodes,
provide a new set of n− 1 equations. Specifically:

zi+1 − zi
hi+1

=
wi+1 + wi

2
, i = 0, 1, ..., n− 1. (4.25)

which is equivalent to:

zi+1 = zi + hi+1
wi + wi+1

2
, i = 1, ..., n− 1. (4.26)

• A second integration of equation (4.24) from xi to x yields the cubic
polynomials si(x):

si(x) = yi + zi(x− xi) + wi
(x− xi)2

2
+
wi+1 − wi

6hi+1
(x− xi)3, (4.27)

∀x ∈ [xi, xi+1], ∀i = 0, 1, ..., n− 1.

• Imposing then the interpolation conditions si(xi+1) = yi+1 provides a
new set of n− 1 equations given by:

yi+1 = yi+zihi+1+wi
h2
i+1

2
+

(wi+1 − wi)h2
i+1

6
, ∀i = 0, 1, ..., n−1 (4.28)

• This last equation leads to 2 simultaneous equations satisfied at all in-
ternal nodes of the spline, i.e., for all i = 1, .., n− 1:{

yi+1−yi
hi+1

= zi + (wi+1 + 2wi)
hi+1

6
yi−yi−1

hi
= zi−1 + (wi + 2wi−1)hi6

Subtracting these last 2 equations and using (4.25) gives:

[xi, xi+1]−[xi−1, xi] = hi
wi−1 + wi

2
+hi+1

(wi+1 + 2wi)

6
−hi

(wi + 2wi−1)

6

Equivalently:

hi
6
wi−1+

hi + hi+1

3
wi+

hi+1

6
wi+1 = (hi+hi+1)[xi−1, xi, xi+1], i = 1, 2, ..., n−1

(4.29)

Since the sought spline is “natural” (w0 = wn = 0), equation (4.29) provides
therefore a system of n− 1 equations in n− 1 unknowns given by:

Aw = r, (4.30)

where the coefficient matrix A of size n− 1× n− 1 is:
(h1 + h2)/3 h2/6 0...0 0

h2/6 (h2 + h3)/3 0...0 0
0 h3/6 0...0 0
0 0 ... hn−1/6
0 ... hn−1/6 (hn−1 + hn)/3

 (4.31)

© 2014 by Taylor & Francis Group, LLC

148 Introduction to Numerical Analysis and Scientific Computing

and the vectors w and r are respectively:

w = (w1, w2, ..., wn−1)T

and

r = (r1, r2, ..., rn−1)T with ri = (hi + hi+1)[xi−1, xi, xi+1]y (4.32)

Note also that the matrix A = {aij} has the following properties:

- A is symmetric, since aij = aji

- A is tridiagonal, since aij = 0 for all i, j with |i− j| > 1.

- A is strictly diagonally dominant, since |aii| >
∑
j 6=i |aij |, ∀i.

Under these conditions, the system (4.30) has a unique solution that can be
obtained through a straightforward Gauss reduction process that does not
necessitate any pivoting strategy. We can now write a pseudocode for the
natural cubic spline.

Algorithm 4.7 Cubic Spline

% Input the data D_n

% Output: cubic spline s(x) interpolating on D_n

% Obtain first w by solving Aw=r by performing the following steps:

1. Generate r = [r1, ..., rn−1]T with ri = (hi + hi+1)[xi−1, xi, xi+1], i =
1, ..., n− 1.

2. Generate the matrix A.

3. Perform Gauss reduction on [A|r].

4. Perform back substitution on reduced system to get w with w0 =
wn = 0.

5. Compute z0 = [x0, x1]− (2w0 + w1)h1/6

6. Compute zi+1 = zi + hi+1(wi+1 + wi)/2, i = 0, 1, ..., n− 1.

7. Generate s(x) through generating si(x):
si(x) = yi+zi(x−xi)+wi(x−xi)2/2+((wi+1−wi/6hi+1)(x−xi)3, i =
0, 1, ..., n− 1.

As an illustration, let us reconsider the Runge function f(x) = 1
1+x2 intro-

duced in Example 4.5, and its natural cubic spline interpolant. The curves
representing these 2 functions over the interval [−5,+5] match completely at
all points. The results are summarized in Figure 4.5.

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 149

FIGURE 4.5: Natural cubic spline approximation for the Runge function
f(x) = 1

1+x2

Example 4.8 The Runge Function and the Natural Cubic Spline
Interpolant

Example 4.9 Determine the natural cubic spline interpolating the following
set of data:

D3 = {(−1, 1); (1, 2); (2,−1); (2.5, 0)}

• Since w0 = w3 = 0
and h1 = x1 − x0 = 2 ;h2 = x2 − x1 = 1 ;h3 = x3 − x2 = 0.5,
the system (4.30) is:

(
1 1/6

1/6 1/2

)(
w1

w2

)
=

(
−7/2

5

)
• Applying the naive Gauss reduction on that system followed by back

substitution:

w = [w0 = 0, w1 = −93/17, w2 = 201/17, w3 = 0]′

• Using (4.28) with i = 0 leads to

z0 = [x0, x1]− (2w0 + w1)h1/6 = −45/34

© 2014 by Taylor & Francis Group, LLC

150 Introduction to Numerical Analysis and Scientific Computing

• Once the value of z0 and (4.26), the vector of slopes is fully determined
with:

z = [z0 = −45/34, z1 = −− 231/34/17, z2 = −123/34, w3 = −45/68]′

• Using (4.27) for successively i = 0, 1, 2, the equations of the cubic spline
are then as follows:

S(x) =

 S0(x) = 1− 9
7 (x+ 1)− 31

68 (x+ 1)3 ; −1 ≤ x ≤ 1
S1(x) = 2− 231

34 (x− 1)− 93
17 (x− 1)2 + 49

17 (x− 1)3 ; 1 ≤ x ≤ 2
S2(x) = −1−− 123

34 (x− 2) + 201
17 (x− 2)2 − 67

17 (x− 2)3 ; 2 ≤ x ≤ 2.5

4.6.4 Solving a Tridiagonal System

Note that, in case Dn, the x-data are equidistant, i.e.,

hi+1 = xi+1 − xi = h, ∀i = 0, ..., n− 1

the matrix A in (4.31) becomes:

A = h


2/3 1/6 0 0... 0
1/6 2/3 1/6 0.. 0
0 1/6 2/3 1/6.. 0
...
...
0 ... 0 1/6 2/3


Since also [xi−1, xi, xi+1] = yi+1−2yi+yi−1

2h2 , the right hand side r in (4.32)
simplifies, and the system (4.30) becomes:

h


2/3 1/6 0 0... 0
1/6 2/3 1/6 0.. 0
0 1/6 2/3 1/6 0..
...
...
0 ... 0 1/6 2/3




w1

w2

...

...

...
wn−1

 =
1

h


y2 − 2y1 + y0

y3 − 2y2 + y1

y4 − 2y3 + y2

......
yn − 2yn−1 + yn−2

 .

The elements of the matrix A can be made independent of h, through dividing
each of the equations by h, thus yielding the following tridiagonal system:

2/3 1/6 0 0... 0
1/6 2/3 1/6 0.. 0
0 1/6 2/3 1/6 0..
...
...
0 ... 0 1/6 2/3




w1

w2

...

...

...
wn−1

 =
1

h2


y2 − 2y1 + y0

y3 − 2y2 + y1

y4 − 2y3 + y2

...

...
yn − 2yn−1 + yn−2

 .

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 151

In what follows, we consider the general triadiagonal system of equations:
Aw = r: 

a1 b1 0 0... 0
c1 a2 b2 0.. 0
0 c2 a3 b3 0..
...
... ... cN−2 aN−1 bN−1

0 ... 0 cN−1 aN




w1

w2

...

...

...
wN

 =


r1

r2

...

...

...
rN

 ,

where the “diagonal” entries of the matrix A are generated by:
- The “main diagonal” vector, a = [ai : 1 ≤ i ≤ N]
- The “upper diagonal” vector, b = [bi : 1 ≤ i ≤ N − 1]
- The “lower diagonal” vector, c = [ci : 1 ≤ i ≤ N − 1]
satisfying the following properties:{

|ai| > |bi|+ |ci−1| : 2 ≤ i ≤ N − 1
|a1| > |b1|, |aN | > |cN−1|

The following algorithm solves this given system:

Algorithm 4.8 Diagonally Dominant Triangular Systems
function w=SolveTridiag(a,b,c,r)

% N is the dimension of a and r; N-1 is the dimension of b and c

% Start with the Gauss reduction process then use back-substitution

for k=1:N-1

m=c(k)/a(k);

a(k+1)=a(k+1)-m*b(k);

r(k+1)=r(k+1)-m*r(k);

end

for k=N:-1:1

w(k)=r(k)/a(k);

if k>1

r(k-1)=r(k-1)-w(k)*b(k-1);

end

end

This algorithm takes 2N − 1 divisions, 3(N − 1) multiplications and as many
algebraic additions, thus a total of 8N − 7 flops.

4.6.5 Errors in Spline Interpolation

From ([27], pages 14 and 61), we can state the following convergence result:

Theorem 4.6 Let f be a function in Ck+1[a, b], and Sk the spline function
that interpolates f based on the set of data Dn, where k = 1, 2, 3. Then,

max
[a,b]
|f(x)− Sk(x)| ≤ Ckhk+1 max

[a,b]
|f (k+1)(x)|

where h = max |xi − xi−1|, for 1 ≤ i ≤ n.

© 2014 by Taylor & Francis Group, LLC

152 Introduction to Numerical Analysis and Scientific Computing

For example:

• If k = 1, then max[a,b] |f(x)− S1(x)| = O(h2)

• If k = 2, then max[a,b] |f(x)− S2(x)| = O(h3)

• If k = 3, then max[a,b] |f(x)− S3(x)| = O(h4)

Note that, in spline interpolation, increasing the number of nodes for a fixed
value of k will definitely lead to convergence. One can prove that:

∀x ∈ [a, b],] lim
n→∞

Sk(x) = f(x).

This property is noticeably absent for global Lagrange interpolation (recall
Runge example).

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 153

4.7 Concluding Remarks

1. Based on a set of data Dn, considering higher degree Lagrange interpo-
lating polynomials does not guarantee reaching more accurate approx-
imations of the unknown function f ; this problem can be overcome by
spline functions, particularly cubic splines. However, neither are suitable
to extrapolate information from the available set of data Dn. To gener-
ate new values at points lying outside the interval [x0, xn], one could use,
for example, regression analysis based on least squares approximations.

2. Polynomial interpolation can also be used to approximate multi-
dimensional functions. In particular, spline function interpolation is well
suited when the region is partitioned into polygons in 2D (triangles or
quadrilaterals) and polyhedra in 3D (tetrahedra or prisms). See([26]).

© 2014 by Taylor & Francis Group, LLC

154 Introduction to Numerical Analysis and Scientific Computing

4.8 Exercises

1. Use the Lagrange form of the Lagrangian interpolating polynomial to
obtain a polynomial of least degree that satisfies the following set of
data: D3 = {(0, 7), (2, 10), (3, 25), (4, 50)}.

2. Consider the following four interpolation nodes: −1, 1, 2, 4. Find the
li functions required in the Lagrange interpolation process and draw
their graphs. Use the Lagrange interpolation form to obtain a poly-
nomial of least degree that satisfies the following set of data: D3 =
{(−1, 1), (1, 0), (2, 2), (4,−3)}.

3. Write the Lagrange form of the interpolating polynomial of degree ≤ 3
that interpolates f(x) at x0, x1, x2 and x3, where the nodes are sorted
from the smallest to the greatest.

4. Write Newton’s interpolating polynomial on the following set of data:

{(0, 7), (2, 10), (3, 12), (4, 15)}

5. Given the data

D4 = {(1,−1), (2,−1/3), (2.5, 3), (3, 4), (4, 5)}

(a) Construct its divided difference table.

(b) Use the “best” quadratic then cubic Newton’s interpolating poly-
nomial, to find an approximation to f(2.7).

6. Using a difference table, derive the polynomial of least degree that as-
sumes the values 2, 14, 10 and 2 respectively for x = −2,−1, 0, 1 and 2.
Use that result, to find a polynomial that takes the values shown and
has at x = 2 the value 4.

7. The polynomial p(x) = 2x4 − x3 − x satisfies the following set of data:

i xi yi

0 −1 4
1 0 0
2 1 0
3 1 22
4 2 138
5 3 444

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 155

Find a polynomial q that takes these values:

i xi yi

0 −1 4
1 0 0
2 1 0
3 2 22
4 3 138
5 4 1

8. Construct a divided difference (or difference) table based on the two
given sets of data in the preceding exercise, then use Newton’s polyno-
mials of all orders to approximate f(2.5), in each case.

9. Determine the polynomial of degree 2 or less whose graph passes through
the points (0, 1), (1, 2), and (2, 4.2). Use two different methods. Verify
that they lead to the same polynomial.

10. Create the table of all Neville’s polynomials in P4 satisfying the following
set of data:

i xi yi

0 1.0 −1.5
1 2.0 −0.5
2 2.5 0.0
3 3.0 0.5
4 4.0 1.0

11. (a) Consider the following set of data:

D5 = {(−2, 1); (−1, 4); (0, 11); (1, 16); (2, 13); (3,−4)}

Show that the interpolating polynomial based on D5 is cubic.
(b) The set D5 is altered as follows:

D
′

5 = {(−2, 1); (−1, 4); (0, 11); (1, 16); (2, 10); (3,−4)},

so that y4 = 10. Based on D
′

5 and using the polynomial found in part
(a), find q01234(x), without computing new divided differences.

12. The polynomial p(x) = x4 + 3x3 − 2x2 + x + 1 interpolates the set of
data

i 0 1 2 3 4
xi −1 −2 0 1 2
yi −4 −17 1 4 35

Without computing any difference or divided difference, use Newton’s

© 2014 by Taylor & Francis Group, LLC

156 Introduction to Numerical Analysis and Scientific Computing

form to determine the polynomial q(x) interpolating the following set of
data:

i 0 1 2 3 4

xi −1 −2 0 1 2
yi −4 0 1 4 35

13. Consider the set of data: D3 = {(−2,−1); (−1, 1); (0, 4); (1.5, 0)}

(a) Based on D3, fill in the following divided difference table, then write
Newton’ form of the interpolating polynomial p123(x), reproducing
part of the data:

i xi yi [., .] [., ., .] [., ., ., .]

0 −2 −1

1 −1 1

2 0 4

3 1.5 0

(b) Based on the equation of the polynomial p123(x) obtained in (a)
and using the coefficients in the divided differences table, determine
the equation of the interpolating polynomial p0123(x). Explain and
justify all your steps.

(c) The initial set of data D3 is modified by inserting a new point be-
tween its elements, with coordinates (xA, yA) = (−0.5, 2). Consider
now the set:

D4 = {(−2,−1); ; (−1, 1); (−0.5, 2); (0, 4); (1.5, 0)},

Using the polynomial found in (b), determine the polynomial q(x)
interpolating D4, without computing new divided differences. Ex-
plain and justify all your steps.

14. Are these functions linear splines? Explain why or why not.

(a)

S(x) =

 x ; −1 ≤ x ≤ 0
1− x ; 0 ≤ x < 1
2x− 2 ; 1 ≤ x ≤ 2

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 157

(b)

S(x) =

 x ; −1 ≤ x ≤ 0.5
0.5x+ 2(x− 0.5) ; 0.5 ≤ x ≤ 2

x+ 1.5 ; 2 ≤ x ≤ 4

15. Determine the linear spline function s(x) interpolating the set of data
D3 and plot its graph. Interpolate f(2.4).

D3 = {(0, 1); (1.5, 2); (2, 6); (2.5, 3)}

16. Could the function S(x) = |x| be a linear spline on the interval [−2, 1]?
Justify your answer.

17. Find the natural quadratic spline interpolant for the following data

i x y
0 −1 3
1 0 0
2 1 1
3 2 2

18. Find the natural quadratic spline interpolant for the following data

i x y
0 1 2
1 2 1
2 5 0
3 3 −1
4 4 4

.

19. Find the quadratic spline interpolant for the following data:

i x y
0 −1 0
1 0 1
2 1/2 0
3 1 1
4 2 0

20. Are these functions quadratic splines? Explain why or why not.

(a)

Q(x) =

{
−x2 ; 0 ≤ x ≤ 1
x ; 0 ≤ x ≤ 100

© 2014 by Taylor & Francis Group, LLC

158 Introduction to Numerical Analysis and Scientific Computing

(b)

Q(x) =

 x ; −50 ≤ x ≤ 1
x2 ; 1 ≤ x ≤ 2
4 ; 2 ≤ x ≤ 50

21. Do there exist a,b, c and d so that the function

S(x) =

 ax+ e ; −5 ≤ x ≤ 1
bx2 + cx ; 1 ≤ x ≤ 2
dx2 ; 2 ≤ x ≤ 3

is a quadratic spline function?

22. Determine the natural cubic spline that interpolates the function f(x) =
2x7 over the interval [0, 2] using nodes 0, 1 and 2.

23. Find the natural cubic spline interpolant for this table:

i x y
0 1 0
1 2.5 1
2 3 0
3 4.5 1
4 5 0

24. Find the natural cubic spline interpolant for this table:

i x y
0 1 0
1 2 1
2 3 0
3 4 1
4 5 0

25. Consider the following set of data generated using the function:

f(x) = x2 sinx− 2x2 + x+ 1

i x y
0 −0.2 0.8790
1 −0.1 0.7121
2 0.1 1.0810
3 0.2 0.1279

(a) Construct the natural cubic spline for the data above.

(b) Use the cubic spline constructed above to approximate f(0.25) and
f ′(0.25), and calculate the absolute error.

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 159

26. Give an example of a cubic spline with nodes 0, 1, 2, and 3 that is linear
in [0, 1], but of degree 3 in at least one of the other two intervals.

27. Give an example of a cubic spline with nodes 0, 1, 2, and 3 that is
quadratic in [0, 1] and in [1, 2], and is cubic in [2, 3].

28. Are these functions cubic splines? Explain why or why not.

(a)

S(x) =

 x+ 1 ; −2 ≤ x ≤ −1
2x3 − 5x+ 1 ; −1 ≤ x ≤ 1

9x− 1 ; 1 ≤ x ≤ 2

(b)

S(x) =

{
x3 + 3x− 2 ; −1 ≤ x ≤ 0
x3 − 2x− 1 ; 0 ≤ x ≤ 1

29. Construct a natural cubic spline to approximate f(x) = e−x based on
the nodes x = 0, 0.25, 0.75 and 1. Integrate the spline over the interval

[0, 1] and compare the results to
∫ 1

0
e−x dx. Use the derivatives of the

spline to approximate f
′
(0.5) and f

′′
(0.5). Compare the approximations

to the actual values.

30. Use the data points (0, 1), (1, e), (2, e4), (3, e9) to form a natural cubic

spline that approximates f(x) = ex
2

. Use then the cubic spline to ap-

proximate I =
∫ 3

0
ex dx.

31. How many additional conditions are needed to specify uniquely a spline
of degree 4 over n knots ?Justify your answer.

32. Let S be a cubic spline that has knots t0 < t1 < t2 < t3. Suppose that
on the 2 intervals [t0, t1] and [t2, t3], S reduces to linear polynomials.
What can be said of S on [t1, t2]?

33. Provide an upper bound of the Lagrange interpolation for the Runge
function defined over the interval [−5,+5] with 11 equally spaced nodes:

(a) Using Lagrange polynomials.

(b) Using linear, quadratic then cubic spline interpollants.

34. Determine the equations of the cubic spline based on the set of data Dn,
if the 2 additional constraints are set to:

s
′′
(x0) = 2[x0, x1, x2], and s

′′
(xn) = 2[xn−2, xn−1, xn]

Use these equations to determine the cubic spline based on the set of
data given in Exercise 23.

© 2014 by Taylor & Francis Group, LLC

160 Introduction to Numerical Analysis and Scientific Computing

35. (a) Write the equations of the natural cubic spline S(x) that interpo-
lates the set of data D3 = {(2, 1), (3, 0), (4, 1), (5,−1)}, and fill in
the following table:

i xi yi zi wi

0 2.00 1 . 0
1 3.00 0 . .
2 4.00 1 . .
3 5.00 −1 . 0

(b) Assume now that the cubic spline is “not natural” and that the 2
additional supplied conditions are:

s
′′
(x0) = 2 and s

′′
(x3) = 0

Determine in that case, the equations of the cubic spline and fill in
the following table:
.

i xi yi zi wi

0 2.00 1 . 2
1 3.00 0 . .
2 4.00 1 . .
3 5.00 −1 . 0

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 161

4.9 Computer Projects

Exercise 1: Polynomial Interpolation
Let x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) be 2 vectors of equal length
n, representing a set of n points in the plane:

Dn = {(xi, yi)|x1 < x2 < ... < xn ; i = 1, 2, ..., n}

where yi = f(xi) for some real valued function f .
To solve Exercise 1, use the MATLAB function p =NevillePolynomial(x,

y, r) given in the lecture notes without checking the validity of inputs. This
function takes as input the 2 vectors x and y and a real number r, with
x1 < r < xn, and computes

p = p1,2,...,n(r)

where p1,2,...,n(.) is Neville’s form of the interpolating polynomial based on
the set of data Dn.

1. Write a MATLAB

function v =VectorNevillePolynomial(x, y, w)

that takes as input the 2 vectors x and y, and a vector w of any length,
and computes the values of Neville’s polynomial at each component of
w. The output of this function is a vector v whose components are:

v(i) = p1,2,...,n(w(i)), ∀ i = 1, ..., length(w)

(Assume that x1 < w(i) < xn ∀i).

2. Consider the Runge function f(x) = 1
1+x2 on the interval [−5,+5].

Write a MATLAB

function [x, fx, s, fs] =GenerateVectors(n, f)

that takes as input an integer n and the Runge function f . Your function:

• First: generates a vector x of length n, whose components are n
equally spaced points in the interval [−5,+5] including the end-
points, evaluates f at these points, and saves these values in a
vector fx.
Hint: The MATLAB built-in function linspace(a,b,n) generates a
row vector of n equally spaced points between a and b, including
the end-points.

• Secondly: generates a vector s of length (n−1) whose ith component
is the midpoint of the interval [xi, xi+1], that is:

s = [s1 =
x1 + x2

2
, ..., si =

xi + xi+1

2
, ..., sn−1 =

xn−1 + xn
2

]

Your function then evaluates f at all components of s and saves
these values in a vector fs.

© 2014 by Taylor & Francis Group, LLC

162 Introduction to Numerical Analysis and Scientific Computing

3. Write a MATLAB

function PlotPolynomial(n, f)

that takes as input an integer n and the Runge function f and plots in
the same figure window, the graphs of f and p1,2,...,n over the set of
ordered points in

X = x U s = {xi, si, xi+1 | i = 1, ..., n− 1}

Note that p1,2,...,n is Neville’s form of the interpolating polynomial based
on the set of data represented by x and fx.

4. Write a MATLAB

function EP =ErrorPolynomial(n, f)

that takes as input an integer n and the Runge function f . Your function
outputs a matrix EP of size (n−1)×4, whose 4 columns are successively
the vectors:

f(s) p1,2,...,n(s) err = |p1,2,...,n(s)−f(s)| relerr =
|p1,2,...,n(s)− f(s)|

|f(s)|

5. Test each of the functions of this exercise on 2 different test cases n > 10,
(n is an odd integer). Save your results and graphs in a Word document.

Exercise 2: Spline Interpolation
All questions are as in Exercise 2, but applied to the quadratic spline instead
of the interpolating polynomial.
Let x = [x1, x2, ..., xn] and y = [y1, y2, ..., yn] be 2 vectors of equal length
n, representing a set of n points in the plane:

Dn = {(xi, yi)|x1 < x2 < ... < xn ; i = 1, 2, ..., n}

where yi = f(xi) for some real valued function f .
To solve Exercise 2, use the MATLAB function q =QuadraticSpline(x, y,

r) given in the lecture notes. (Do not check validity of inputs).
This function takes as input the 2 vectors x and y and a real number r, with
x1 < r < xn, and computes

q = Q(r)

where Q(.) is the quadratic spline interpolating the set of data Dn.

1. Write a MATLAB

function v =VectorQuadraticSpline(x, y, w)

that takes as input the 2 vectors x and y, and a vector w of any length,
and computes the values of the quadratic spline function at each com-
ponent of w.
(Assume that x1 < w(i) < xn ∀i = 1, ..., length(w)).

© 2014 by Taylor & Francis Group, LLC

Polynomial Interpolation and Splines Fitting 163

2. Consider the Runge function f(x) = 1
1+x2 on the interval [−5,+5].

Write a MATLAB

function PlotSpline(n, f)

that takes as input an integer n and the Runge function f and plots in
the same figure window, the graphs of f and Q over the set of ordered
points in:

X = x U s = {xi, si, xi+1 | i = 1, ..., n− 1}

Note that Q is the quadratic spline interpolating the set of data repre-
sented by x and fx.
Hint: Call for the function GenerateVectors(n, f) programmed in
Exercise 2.

3. Write a MATLAB

function ES =ErrorSpline(n, f)

that takes as input the integer n and the Runge function f . Your function
outputs a matrix ES of size (n+1)×4 whose 4 columns are successively
the vectors:

f(s) Q(s) err = |Q(s)− f(s)| relerr =
|Q(s)− f(s)|
|f(s)|

4. Test each of the functions of this exercise on 2 different test cases n > 20,
(n is an odd integer.) Save your results and graphs in a Word document.

Exercise 3: Quadratic Spline Interpolation
Let Dn = {(xi, yi)|i = 1, 2, ..., n ; x1 < x2 < < xn; yi =
f(xi) , f : unknown} be a given set of n points in the plane. The objective
of this exercise is to determine the quadratic spline onterpolant S(x), based
on Dn. For this purpose:

1. Write a MATLAB

function z = QuadrSplineDerivatives(x,y)

that takes as input a set of 2 vectors x = [x1, x2, ..., xn] and y =
[y1, y2, ..., yn] as given by Dn, and returns a vector z which components
are the derivatives of the quadratic spline at all nodes of the interpola-
tion. Select z(1) arbitrarily.

2. Write a MATLAB

function C = QuadrSplineCoefficients(x,y)

that takes as input a set of 2 vectors x and y, finds the derivatives of
the corresponding quadratic spline at all the nodes of the interpolation,
and returns a matrix C of size 3 × (n − 1) representing the coefficients
(yi, zi,

zi+1−zi
xi+1−xi) of the quadratic spline over each subinterval [xi, xi+1].

3. Write a MATLAB

function E = EvaluateQuadrSpline(x,y,u)

that computes the value of S(u) by locating first u in the appropriate

© 2014 by Taylor & Francis Group, LLC

164 Introduction to Numerical Analysis and Scientific Computing

subinterval [xi, xi+1]. Your function should also display an error message
if u 6∈ [x1, xn]. (For example “The value of S(2.5) cannot be evaluated”)

4. Write a MATLAB

function V = EvaluateQuadrSpline1(x,y,w)

that computes the value of the quadratic spline at each component of a
given vector w of any length.

5. Write a MATLAB

function PlotQuadrSpline(x,y)

that takes as input a set of 2 vectors x and y and plots the graph of
S(x) over each subinterval [xi, xi+1].

6. Test each one of the functions above for 2 different test cases, and save
the results in a Word document.

© 2014 by Taylor & Francis Group, LLC

Chapter 5

Numerical Differentiation and
Integration

5.1 Introduction . 165
5.2 Mathematical Prerequisites . 166
5.3 Numerical Differentiation . 167

5.3.1 Approximation of First Derivatives: Error Analysis 168
5.3.2 Approximation of Second Derivatives: Error Analysis 172

5.4 Richardson Extrapolation . 174
5.5 Richardson Extrapolation in Numerical Differentiation 176

5.5.1 Richardson Extrapolation for First Derivatives 176
5.5.2 Second Order Derivatives and Richardson Extrapolation 180

5.6 Numerical Integration . 181
5.6.1 The Rectangular Rules . 182
5.6.2 The Trapezoidal Rule . 184
5.6.3 The Midpoint Rectangular Rule . 186
5.6.4 Recurrence Relation between Trapezoid and Midpoint Rules 188
5.6.5 Simpson’s Rule . 189

5.7 Romberg Integration . 192

5.8 Appendix: Error Expression for the Midpoint Rule when h = b−a
2l

. 195

5.9 Exercises . 197
5.10 Computer Projects . 205

5.1 Introduction

As in the previous chapter, let Dn be a set of n + 1 given points in the
(x, y) plane:

Dn = {(xi, yi)| 0 ≤ i ≤ n; a = x0 < x1 < ... < xn = b; yi = f(xi)}, (5.1)

for some function f(x). Based on Dn, our basic objective is to seek accurate
“approximations” for:

1. f
′
(xi) and f

′′
(xi) : i = 0, 1, ..., n (Numerical Differentiation),

2. I =
∫ b
a
f(x) dx (Numerical Integration).

In what follows and unless stated otherwise, we shall assume that the x-data
in Dn are {equally spaced, with:

h = xi+1 − xi.

165

© 2014 by Taylor & Francis Group, LLC

166 Introduction to Numerical Analysis and Scientific Computing

The topic of numerical differentiation and integration is usually based on
the theory of Lagrange interpolation (see Chapter 4). However, it uses also
some standard calculus tools such as Taylor’s formula, the Intermediate Value
Theorem and the Mean Value formulae (first and second). We start by a quick
review of these basic results. (For references, see [4], [9], [21].)

5.2 Mathematical Prerequisites

1. Taylor’s formula
Let h0 > 0 and m ∈ R . Assume the function f(x) ∈ Ck+1[(m− h0,m+
h0)] that is, its derivatives:

{f (j)(x) : j = 1, ..., k, k + 1}

are continuous in the interval (m−h0,m+h0) . Then for all h < h0 ∈ R ,
there exists t ∈ (0, 1), such that:

f(m+ h) = f(m) + f ′(m)h+ f (2)(m)
h2

2
+ ... (5.2)

...+ f (k)(m)
hk

k!
+ f (k+1)(c)

hk+1

(k + 1)!
,

with c = m + th. Formula (5.2) will be refered to as “Taylor’s devel-
opment about m” up to the kth-order, the “remainder term” being

Rk = f (k+1)(c) hk+1

(k+1)! . Using the big-O(.) notation, we abbreviate the

formula as follows:

f(m+ h) = f(m) + f ′(m)h+ f (2)(m)
h2

2
+ ...+ f (k)(m)

hk

k!
+O(hk+1).

(5.3)
For the case where f is analytical, that implies continuity of derivatives
up to any order k, the finite Taylor series can be transformed into an
infinite convergent series, for |h| < h0:

f(m+ h) = f(m) + f ′(m)h+ f (2)(m)
h2

2
+ ...+ f (k)(m)

hk

k!
+ ... (5.4)

Hence, we will be using subsequently each of (5.2), (5.3) or (5.4).

2. Use of the Intermediate Value Theorem
Let g be a continuous function defined on R . Then for every finite subset
{m1,m2, ...,mk} of Dg, the domain of g, then there exists a number
c ∈ Dg, such that:

k∑
i=1

g(mi) = kg(c). (5.5)

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 167

This identity is a straightforward application of the well-known “Inter-
mediate Value Theorem, “based on the continuity of g and on the fact
that:

min
x∈Dg

g(x) ≤ 1

k

k∑
i=1

g(mi) ≤ max
x∈Dg

g(x).

3. Mean Value Theorems

(a) First Mean Value Theorem
This theorem results from the application of Taylor’s formula where
the error term is expressed in terms of a first derivative, specifically:

f(m+ h)− f(m) = hf ′(c), c ∈ (m,m+ h),

which is equivalent to:∫ m+h

m

f ′(x)dx = f ′(c)h. (5.6)

(b) Second Mean Value Theorem
This one generalizes the previous one, (5.6) becoming:∫ m+h

m

w(x)g(x)dx = g(c)

∫ m+h

m

w(x)dx, (5.7)

where g(x) and w(x) are continuous functions with w(x) ≥ 0 (or
w(x) ≤ 0).

5.3 Numerical Differentiation

The basic principle in approximation of derivatives is the systematic use
of divided differences as suggested by the following result.

Theorem 5.1 Assume that the function f is k-times continuously differen-
tiable. Then for every subset of distinct points {xi, xi+1, ..., xi+k} in the do-
main of f , there exists ck ∈ (xi, xi+k), such that:

[xi, xi+1, ..., xi+k] =
f (k)(ck)

k!
.

Proof. To obtain such result, one considers the function g(x) defined by:

g(x) = f(x)− pi i+1 ... i+k(x).

© 2014 by Taylor & Francis Group, LLC

168 Introduction to Numerical Analysis and Scientific Computing

where pi i+1 ... i+k(x) is the Lagrange interpolating polynomial based on the
nodes {xi, xi+1, ..., xi+k}. As g(x) = 0 at all these nodes, then according to
Rolles’ theorem and the regularity assumptions on f(x), one concludes the
existence of “intermediate points”: {x1

i+j | j = 0, 1, ..., k−1}, for which g
′
(x) =

0. Repeating the argument k times, one reaches one “last intermediate point”
ck = xki , such that g(k)(ck) = 0. Since according to Newton’s formula:

p
(k)
i i+1 ... i+k(x) = k![xi, xi+1, ..., xi+k],

then:
g(k)(x) = f (k)(x)− k![xi, xi+1, ..., xi+k].

Setting in this last equation x = ck, yields the result of the theorem.

Based on the set of points (5.1), Divided Differences appear to provide ef-
ficient “discrete” tools to approximate derivatives. Specifically, for 0 < l ≤ k,
we approximate f (l)(xj), for j = i, i + 1, ..., i + k by l!× (some appropriate
Divided Difference of order l). Specifically:

f (l)(xj) ≈ l![xi0 , xi1 , ..., xil],

for distinct indices im ∈ {i, i+1, ..., i+k}. In what follows, we will only handle
the cases of first and second derivatives, i.e., l = 1, 2.

5.3.1 Approximation of First Derivatives: Error Analysis

Theorem 5.1 suggests the following approximation formulae for first order
derivatives:

f ′(xi) ≈


[xi, xi+1] = yi+1−yi

h = ∆hyi
h (5.8.1)

[xi−1, xi] = yi−yi−1

h = ∇hyi
h (5.8.2)

[xi−1, xi+1] = yi+1−yi−1

2h = δhyi
2h (5.8.3)

(5.8)

These approximations to the first derivative are successively:

• the Forward Divided Difference approximation (5.8.1)

• the Backward Divided Difference approximation (5.8.2)

• the Central Divided Difference approximation (5.8.3)

Obviously, the Forward approximation formula (5.8.1) for the derivative is par-
ticularly suitable when computing f

′
(x0), while (5.8.2) would be used when

approximating f
′
(xn). The Central Divided Difference (5.8.3) is suitable for

approximating f
′
(xi) for all i = 1, ..., n− 1.

Error Analysis and Order of the Methods
Let h be a positive number, such that 0 < h ≤ 1. We analyze the error
estimate in each of the above three approximations.

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 169

• Forward Difference approximation:
Using Taylor’s formula up to order 1, we can write:

f(x+ h) = f(x) + hf ′(x) +
1

2
h2f ′′(c) (5.9)

where c is in the interval (x, x+ h), and which leads to:

f ′(x) =
1

h
[f(x+ h)− f(x)]− 1

2
hf (2)(c)

Hence the approximation:

f ′(x) ≈ 1

h
[f(x+ h)− f(x)] =

∆hf(x)

h

is the first order Forward Difference approximation (5.8.1) to f ′(x),
with a truncation error term E = − 1

2f
′′(c)h of order h. We write then:

E = O(h).

• Backward Difference approximation:
Likewise, replacing h by (−h), equation (5.9) implies then:

f(x− h) = f(x)− hf ′(x) +
1

2
h2f (2)(c′) (5.10)

where c is in the interval (x− h, x), leading to:

f ′(x) =
1

h
[f(x)− f(x− h)] +

1

2
hf (2)(c)

Hence the approximation:

f ′(x) ≈ 1

h
[f(x)− f(x− h)] =

∇hf(x)

h

is the first order Backward Difference approximation (5.8.2) to f ′(x),
and its truncation error term E = + 1

2hf
′′(c′) is of order h.

• Central Difference approximation:
However, it is advantageous to have the convergence of numerical pro-
cesses occur with higher orders. In the present situation, we want an
approximation to f ′(x) in which the error behaves like O(h2). One such
result is easily obtained based on the Central Divided Difference ap-
proximation with the aid of Taylor’s series where f is assumed to have
continuous order derivatives up to order 3. Thus:

f(x+h) = f(x)+hf ′(x)+
1

2!
h2f (2)(x)+

1

3!
h3f (3)(c1) ; x < c1 < x+h

(5.11)

© 2014 by Taylor & Francis Group, LLC

170 Introduction to Numerical Analysis and Scientific Computing

and similarly:

f(x−h) = f(x)−hf ′(x)+
1

2!
h2f (2)(x)− 1

3!
h3f (3)(c2) ; x−h < c2 < x

(5.12)
By subtraction, and using the Intermediate Value Theorem, we obtain:

f(x+h)−f(x−h) = 2hf ′(x)+
2

3!
h3(f (3)(c) ; x−h < c < x+h (5.13)

This leads to a new approximation for f ′(x):

f ′(x) =
1

2h
[f(x+ h)− f(x− h)]− 1

3!
h2f (3)(c) (5.14)

where the approximation

f ′(x) ≈ f(x+ h)− f(x− h)

2h
=
δhf(x)

2h

is the first order Central Difference approximation to f ′(x), with its
truncation error E = O(h2).

Based on the formulae above, we can therefore write the first order approx-
imations to the first derivative with their respective order of convergence as
follows:

Proposition 5.1 Let 0 < h ≤ 1. Then

f ′(x) =


∆hf(x)

h − f (2)(c)h2 = ∆hf(x)
h +O(h), f(x) ∈ C2, (5.15.1)

∇hf(x)
h + f (2)(c′)h2 = ∇hf(x)

h +O(h), f(x) ∈ C2, (5.15.2)
δhf(x)
h − f (3)(c′′)h

2

6 = δhf(x)
2h +O(h2), f(x) ∈ C3, (5.15.3)

(5.15)

where c ∈ (x, x+h), c′ ∈ (x−h, x) and c′′ ∈ (x−h, x+h). Obviously, for the
first 2 approximations it is sufficient that f be a C2 function, while for the
third one f is required to be C3 function over its domain.
For x = xi, the above formulae can be rewritten in terms of first order finite
differences:

f ′(xi) =


∆hf(xi)

h +O(h) = [xi, xi + h] +O(h)
∇hf(xi)

h +O(h) = [xi − h, xi] +O(h)
δhf(xi)

2h +O(h2) = [xi − h, xi + h] +O(h2)

To illustrate, consider the following table of data associated with the 0 -order
Bessel’s function of the first kind f(x) = J0(x) and 9 equidistant points (8
intervals) where h = 0.25:

Example 5.1 Based on Table 5.1, find approximations to J ′0(0) = 0 using
the Forward Difference approximation formula.

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 171

i xi yi

0 0.00 1.0000000
1 0.25 0.98443593
2 0.50 0.93846981
3 0.75 0.86424228
4 1.00 0.76519769
5 1.25 0.64590609
6 1.50 0.51182767
7 1.75 0.36903253
8 2.00 0.22389078

TABLE 5.1: Data for Bessel function J0(x), x = 0.0 0.25, ..., 2.00

h 1
h∆hf(0)

0.25 -0.06225628
0.50 -0.12306039
0.75 -0.18101020
1.00 -0.23480231

TABLE 5.2: Approximations for J ′0(0) = 0, for h = 0.25, 0.50, 0.75, 1.00

Applying formula (5.15.1), we obtain results of such approximations in Table
5.2.

Example 5.2 Based on Table 5.1, find approximations to J
′

0(0.25) =
−0.12402598 using the Forward, the Backward and the Central Difference ap-
proximation formulae.

Table 5.3 summarizes the results of such approximations.

Example 5.3 Find approximations to J ′0(1) = −0.44005059 using the central
difference approximation formula.

Table 5.4 provides the results obtained by applying formula (5.15.3).

h 1
h∆hf(0.25) 1

2hδhf(0.25) 1
h∇hf(0.25)

0.25 -0.18386449 -0.12306039 -0.06225628

TABLE 5.3: Approximations to J
′

0(0.25) = −0.12402598 using central, back-
ward and forward differences

© 2014 by Taylor & Francis Group, LLC

172 Introduction to Numerical Analysis and Scientific Computing

h 1
2hδhf(1)

0.25 -0.43667238
0.50 -0.42664214
1.00 -0.38805461

TABLE 5.4: Approximations for J ′0(1) = −0.44005059, using central differ-
ence formula

5.3.2 Approximation of Second Derivatives: Error Analysis

A direct application of Theorem 5.1, with k = 2 suggests the following
approximation formulae for second order derivatives:

f
′′
(xi) ≈


2[xi, xi+1, xi+2] = yi+2−2yi+1+yi

h2 =
∆2
hyi
h2 ; Forward divided difference

2[xi−2, xi−1, xi] = yi−2yi−1+yi−2

h2 =
∇2
hyi
h2 ; Backward divided difference

2[xi−1, xi, xi+1] = yi+1−2yi+yi−1

h2 =
δ2hyi
h2 ; Central divided difference

Error Analysis and Order of the Methods

• Forward Difference approximation
Consider the 2 Taylor’s series expansions of f up to second order given
by:

(i) f(x+ h) = f(x) + h
1!f
′(x) + h2

2! f
′′(x) + h3

3! f
(3)(c1) ; c1 ∈ (x, x+ h)

(ii) f(x + 2h) = f(x) + (2h)
1! f

′(x) + (2h)2

2! f ′′(x) + (2h)3

3! f (3)(c2) ; c2 ∈
(x, x+ 2h)

where f is assumed to be a C3-function.
The algebraic operation: f(x + 2h) − 2f(x + h) leads to the Forward
Difference approximation to f ′′(x), which satisfies the following:

f ′′(x) =
f(x+ 2h)− 2f(x+ h) + f(x)

h2
+O(h) =

∆2
hf(x)

h2
+O(h)

(5.16)

• Backward Difference approximation
Furthermore, replacing h by −h in equations (i) and (ii) above, one also
has:

(iii) f(x− h) = f(x)− h
1!f
′(x) + h2

2! f
′′(x)− h3

3! f
(3)(c3) ; c3 ∈ (x− h, x)

(iv) f(x − 2h) = f(x) − (2h)
1! f

′(x) + (2h)2

2! f
′′
(x) − (2h)3

3! f (3)(c4) ; c4 ∈
(x− 2h, x+)

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 173

The algebraic operation: f(x− 2h)− 2f(x− h) leads to the Backward
Divided Difference approximation to f ′′(x). This one satisfies the
following:

f
′′
(x) =

f(x− 2h)− 2f(x− h) + f(x)

h2
+O(h) =

∇2
hf(x)

h2
+O(h)

(5.17)

• Central Difference approximation
In this case we start by writing Taylor’s series expansions up to the third
order successively for f(x+ h) and f(x− h). This leads to:

f(x+ h) + f(x− h) = 2f(x) + f
′′
(x)h2 +

h4

4!
(f (4)(c1) + f (4)(c2))

Dividing by h2 and using the Intermediate Value Theorem, one con-
cludes that:

f
′′
(x) =

f(x+ h)− 2f(x) + f(x− h)

h2
− h2

12
f (4)(c) =

δ2
h

h2
(f(x)) +O(h2)

(5.18)

which is Central Difference approximation to f
′′
(x).

Based on the results above, the following proposition is satisfied:

Proposition 5.2 Let 0 < h ≤ 1. Then

f
′′
(x) =


∆2
hf(x)
h2 +O(h), f(x) ∈ C3, (5.19.1)

∇2
hf(x)
h2 +O(h), f(x) ∈ C3, (5.19.2)

δ2hf(x)
h2 +O(h2), f(x) ∈ C4, (5.19.3)

(5.19)

where f is assumed to be a C3 function for the first 2 approximations, and a
C4 function for the third approximation.
In terms of divided differences, the second order derivatives at x = xi satisfy
the following estimates:

f ′′(xi) =


∆2
hyi
h2 +O(h) = 2[xi, xi+1, xi+2] +O(h); Forward Difference
∇2
hyi
h2 +O(h) = 2[xi−2, xi−1, xi] +O(h); Backward Difference
δ2hyi
h2 +O(h2) = 2[xi−1, xi, xi+1] +O(h2); Central Difference

Remark 5.1 Note that, based on Theorem 5.1, the following approximation
formulae for the third derivative of f can also be obtained:

f ′′′(xi) ≈


∆3
hyi
h3 = 6[xi, xi+1, xi+2, xi+3]; Forward Difference
∇3
hyi
h3 = 6[xi−3, xi−2, xi−1, xi]; Backward Difference
δ3hyi
h3 = 6[xi−2, xi−1, xi+1, xi+2]; Central Difference

To improve accuracy on the basis of the formulae obtained for first and second
derivatives, we turn to the subtle tool of Richardson extrapolation.

© 2014 by Taylor & Francis Group, LLC

174 Introduction to Numerical Analysis and Scientific Computing

5.4 Richardson Extrapolation

In order to obtain higher order approximations to a target quantity Q, it is
possible to use a powerful technique known as Richardson Extrapolation.
Such technique is a powerful tool in numerical computing. Its purpose is to
accelerate convergence to Q of sequences {Q(h)} when h → 0, without a
need to consider too small values of h (or equivalently too large values of n
as introduced in (5.1)). Specifically, it assumes an a-priori knowledge of the
behavior of the error in the case where one is approximating the quantity Q
by Q(h), whereas limh→0Q(h) = Q, and:

Q = Q(h) + c1h
α +O(hβ), β > α, (a-priori estimate) (5.20)

where c1 is independent from h. An improved Richardson formula can then be
derived based on the two approximations Q(h) and Q(h/2). For that purpose,
we rewrite (5.20) with h replaced by h/2. This leads to:

Q = Q(h/2) + c1(
h

2
)α +O(hβ) (5.21)

By considering the algebraic combination:

2α × Equation (5.21)− Equation (5.20),

one obtains:
(2α − 1)Q = 2αQ(h/2)−Q(h) +O(hβ).

Such equation is equivalent to:

Q = [
2αQ(h/2)−Q(h)

2α − 1
] +O(hβ).

hence leading to Q1(h/2), a first-order Richardson approximation to Q, veri-
fying: {

Q1(h/2) = 2αQ(h/2)−Q(h)
2α−1 , (5.22.1)

Q = Q1(h/2) +O(hβ), (5.22.2)
(5.22)

Therefore, by using simple algebra and eliminating (or “killing”) the most
dominant term in the error expression of Q−Q(h), one reaches a more accurate
approximation Q1(h/2) as defined in (5.22.1) and satisfying (5.22.2).
Equivalently, (5.22) is also written as follows:{

Q1(h) = 2αQ(h)−Q(2h)
2α−1 , (5.23.1)

Q = Q1(h) +O(hβ), (5.23.2)
(5.23)

where it is understood that h represents the “last value” reached by that

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 175

h Q(h) Q1(h) Q2(h)
h0 Q(h0) . .
h0/2 Q(h0/2) Q1(h/2) .
h0/4 Q(h0/4) Q1(h/4) Q2(h/4)

TABLE 5.5: Description of a Richardson’s process for Q = Q(h) + c1h
α +

O(hβ) + ...

parameter.
Obviously, in case an a-priori knowledge is given also on Q−Q1(h), such as:

Q−Q1(h) = c
′

1h
β +O(hγ), with γ > β,

then a second Richardson extrapolation can be carried out. Specifically if we
let:

Q2(h/2) =
2βQ1(h/2)−Q1(h)

2β − 1
,

then we show that:

Q−Q2(h) = O(hγ).

Such formula is supposed to provide better approximations to Q than would
Q(.) and Q1(.).

Remark 5.2 When dealing with Richardson extrapolation, one starts by com-
puting a first set of values of Q(h), for h = h0, h0/2, h0/4,

Although theoretically the values

{Qk(h) | k ≥ 0 ∈ N, and h→ 0}

get closer to Q as k increases or h decreases to 0, one observes that in practice,
due to the propagation of rounding errors, these computed values tend
to become less reliable. Henceforth a threshold hm = h0

2m for h can be reached,
whereas all calculated values for h < hm are to be rejected, keeping only:

{Qk(h)|h = h0, h0/2, ..., h0/2
m}.

Given that fact, Richardson extrapolations would result using this last set of
valid data. This is indicated in Table 5.5, for the case where m = 2.

Remark 5.3 Note also that one can carry a Richardson extrapolation without
necessarily dividing h by 2, but more generally by a factor q > 1.

© 2014 by Taylor & Francis Group, LLC

176 Introduction to Numerical Analysis and Scientific Computing

In such case (5.21) becomes:

Q = Q(h/q) + c1(
h

q
)α +O(hβ). (5.24)

Thus:
qα × Equation (5.24)− Equation (5.20)

yields a first order extrapolation formula:

Q1(h/q) =
qαQ(h/q)−Q(h)

qα − 1
with Q = Q1(h/q) +O(hβ). (5.25)

5.5 Richardson Extrapolation in Numerical Differentia-
tion

We start by illustrating this process on the approximation formulae ob-
tained for the first and second derivatives in Section 5.3.

5.5.1 Richardson Extrapolation for First Derivatives

Forward and Backward Differences
Recall that for a function f ∈ C∞, the infinite Taylor’s series expansion
formula of f(x+ h) is as follows:

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f (2)(x) +

h3

3!
f (3)(x) + ...

leading to:

f ′(x) =
∆hf(x)

h
+ a1h+ a2h

2 + a3h
3 + ... (5.26)

where the {ai}’s are constants that are independent of h and depend on the
derivatives of f at x.
Considering that Q = f

′
(x) is the quantity to be approximated, let now:

Q(h) = φh(f(x)) =
∆h(f(x))

h
(5.27)

Considering successively h then h/2 in (5.26), one has:
(5.26.a)f ′(x) = φh(f(x)) + a1h+ a2h

2 + a3h
3 + ...

(5.26.b)f ′(x) = φh/2(f(x)) + a1h/2 + a2(h/2)2 + a3(h/2)3 + ...
The algebraic operation 2× (5.26.b)− (5.26.a) yields then:

f ′(x) = [2φh/2(f(x))− φh(f(x))] + (a2/2)h2 +O(h3).

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 177

Introducing the first-order Forward Richardson extrapolation operator, let:

φ1
h/2(f(x)) = 2φh/2(f(x))− φh(f(x)) (5.28)

One obtains as clarified in (5.23):

f ′(x) =

{
φ1
h(f(x)) + a′2h

2 + a′3h
3 + ...

φ1
h(f(x)) +O(h2)

(5.29)

with the constants a′2, a′3,..., independent of h.
The process can be further continued, i.e., one can consider second-order
Richardson extrapolations. From equation (5.29), one has simultaneously:
(5.29.a) f ′(x) = φ1

h(f(x)) + a′2h
2 + a′3h

3 + ...
(5.29.b) f ′(x) = φ1

h/2(f(x)) + a′2(h/2)2 + a′3(h/2)3 + ...

The algebraic operation 4× (5.29.b)− (5.29.a) eliminates the most dominant
term in the error series and yields:

f ′(x) = [
4φ1

h/2(f(x))− φ1
h(f(x))

3
]− 1

2
a′3h

3 +O(h4)

Introducing the second-order Richardson extrapolation operator, let

φ2
h/2(f(x)) =

4φ1
h/2(f(x))− φ1

h(f(x))

3
(5.30)

One obtains:

f ′(x) =

{
φ2
h(f(x))− 1

2a
′
3h

3 + ...
φ2
h(f(x)) +O(h3)

(5.31)

This is yet another improvement with a precision of O(h3), i.e., φ2
h/2(f(x))

provides a third order approximation to f ′(x).
The successive Richardson extrapolation formulae and error estimates are then
as follows:

f ′(x) =



φh(f(x)) +O(h)
φ1
h(f(x)) +O(h2)
φ2
h(f(x)) +O(h3)
φ3
h(f(x)) +O(h4)
......
φkh(f(x)) +O(hk+1)

(5.32)

where:

φh(.) =
∆h(.)

h
; φ1

h =
21φh(.)− φ2h(.)

21 − 1
; φ2

h(.) =
22φ1

h(.)− φ1
2h(.)

22 − 1
; φ3

h(.) =
23φ2

h(.)− φ2
2h(.)

23 − 1

The kth-order Forward Richardson operator being defined as follows:

φkh(.) =
2kφk−1

h (.)− φk−1
2h (.)

2k − 1

with the error term of O(hk+1).

© 2014 by Taylor & Francis Group, LLC

178 Introduction to Numerical Analysis and Scientific Computing

h φh = 1
h∆h(f(0)) φ1

h(f(0)) φ2
h(f(0))

1.00 -0.23480231 . .
0.50 -0.12306039 0.06694897 .
0.25 -0.06225628 -0.00145217 -0.02425255

TABLE 5.6: Refined approximations to J ′0(0) using Richardson’s extrapola-
tion

Example 5.4 On the basis of Table 5.1, find improvements to Forward Dif-
ference approximations to f ′(x), using Richardson extrapolation operators of
the 1st and second order.

We apply (5.28) and (5.30) yielding the results in Table 5.6. The following
MATLAB algorithm is based on the Forward difference scheme. It approximates
the 1st order derivative f ′(a) by k successive applications of Richardson pro-
cess.

Algorithm 5.1 Implementation of Richardson Extrapolation for
Forward Difference Formula to First Derivative

function D = Richardson(f,k,h,a)

% This algorithm applies the Richardson extrapolation tool up to kth order

% Input a function f, 0 < h <=1 , k: maximum order to approximate f’(a)

% In Matrix A : 1st column, values of h; 2nd column: Forward Differences

% Remaining columns: Richardson Extrapolation from 1st up to kth order

% Output D=A(k+1, k+2): kth order Richardson extrapolation

A = zeros(k+1,k+2) ;

for i=1:k+1

A(i,1)=h/ 2^(i-1) ;

A(i,2)=(f(a + A(i,1))-f(a)) / A(i, 1) ;

end

for j=3: k+2

it=j-2 ;

for i=j-1: k+1

A(i,j)=(2^it * A(i, j-1) - A(i-1, j-1))/ (2^it - 1) ;

end

end

D = A(k+1,k+2) ;

Note that we can also derive Richardson extrapolation formulae based on the
Backward difference approximation to f ′(x) as in (5.8.2), i.e., starting with

f ′(x) =
∇h(f(x))

h
+ b1h+ b2h

2 + ...

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 179

where the {bi} are constants independent of h. We let then:

Q(h) = χh(.) =
∇h(.)

h
(5.33)

It is easy to verify that the successive Backward Difference Richardson
operators satisfy the following estimates:

f ′(x) =


χh(f(x)) +O(h)
χ1
h(f(x)) +O(h2)
χ2
h(f(x)) +O(h3)
......
χkh(f(x)) +O(hk+1)

(5.34)

where: χh(.) = ∇h(.)
h and χkh(.) =

2kχk−1
h (.)−χk−1

2h (.)

2k−1
with the error term of

O(hk+1).
Central Difference
As derived in Section 5.3.1, if the function f ∈ C∞, the Central Difference
approximation to f ′(x) satisfies the following equation:

f ′(x) =
δh(f(x))

2h
+ d1h

2 + d2h
4 + ...

With such information, it is possible to rely again on Richardson extrapolation
to bring more accuracy out of the method in the approximation formulae of
f ′(x). Specifically, letting now:

Q(h) = ψh(.) =
δh(.)

2h

obviously, then:

f ′(x) = ψh(f(x)) + d1h
2 + d2h

4 + ... = ψh(f(x)) +O(h2) (5.35)

Taking successively h then h/2 in the equation above, one has:
(5.35.a) f ′(x) = ψh(f(x)) + d1h

2 + d2h
4 + ...

(5.35.b) f ′(x) = ψh/2(f(x)) + d1(h/2)2 + d2(h/2)4 + ...

The algebraic operation 4× (5.35.b)− (5.35.a) yields:

f ′(x) = [
4ψh/2(f(x))− ψ2h(f(x))

3
] +O(h4)

Let the first-order Richardson extrapolation operator be defined by

ψ1
h/2(.) =

22ψh/2(.)− ψh(.)

22 − 1

One can write then:
f ′(x) = ψ1

h(f(x)) +O(h4) (5.36)

© 2014 by Taylor & Francis Group, LLC

180 Introduction to Numerical Analysis and Scientific Computing

Reapplying the same process on this result leads therefore to the following
identities:

(5.36.a) f ′(x) = ψ1
h(f(x)) + d′2h

4 + d′3h
6 + ...

(5.36.b) f ′(x) = ψ1
h/2(f(x)) + d′2f

(5)(x)(h/2)4 + d′3(h/2)6 + ...

The algebraic operation 16×(5.36.b)−(5.36.a) yields:

f ′(x) =
24ψ1

h/2(f(x))− ψ1
h(f(x))

24 − 1
+O(h6)

or equivalently:
f ′(x) = ψ2

h(f(x)) +O(h6).

Therefore, the first Central Difference Richardson extrapolation for-
mulae obtained are as follows:

f ′(x) =


ψh(f(x)) +O(h2)
ψ1
h(f(x)) +O(h4)

ψ2
h(f(x)) +O(h6)

......
ψkh(f(x)) +O(h2k+2)

(5.37)

where

ψh(.) =
δh(.)

2h
, ψ1

h(.) =
22ψh(.)− ψ2h(.)

22 − 1
, ψ2

h(.) =
24ψ1

h(.)− ψ1
2h(.)

24 − 1

with the kth-order operator defined as follows:

ψkh(.) =
22kψk−1

h (.)− ψk−1
2h (.)

22k − 1

where the error term is O(h2k+2)

5.5.2 Second Order Derivatives and Richardson Extrapola-
tion

Consider now some function f ∈ C∞. In order to improve the accuracy of
the approximations to the second derivative f

′′
(x), we also rely on Richard-

son extrapolation process that could be applied successively to the Forward,
Backward and Central Difference formulae.
In this section, we analyze briefly the Richardson extrapolation central
difference approximations to f ′

′′
(x), as the steps are similar to those of

the first derivative detailed in 5.5.1 above.
Starting by adding the infinite Taylor’s series expansions for f(x + h) and
f(x− h) and based on (5.18), let now:

Q = f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2
=
δ2
hf(x)

h2
(5.38)

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 181

with:

Q(h) = ψh(.) =
δ2
h(.)

h2

It is easy to verify that:

f ′′(x) = ψh(f(x)) + d1h
2 + d2h

4 + ... (5.39)

leading then successively to the following estimates equivalent to (5.37):

f ′′(x) =


ψh(f(x)) +O(h2)
ψ1
h(f(x)) +O(h4)
ψ2
h(f(x)) +O(h6)
......
ψkh(f(x)) +O(h2k+2)

(5.40)

where:

ψh(.) =
δ2
h(.)

2h
; ψ1

h(.) =
22ψh(.)− ψ2h(.)

22 − 1
; ψ2

h(.) =
24ψ1

h(.)− ψ1
2h(.)

24 − 1

with the kth-order operator defined as follows:

ψkh(.) =
22kψk−1

h (.)− ψk−1
2h (.)

22k − 1

where the error term is O(h2k+2)

5.6 Numerical Integration

Based on the data (5.1)

Dn = {(xi, yi)| 0 ≤ i ≤ n; a = x0 < x1 < ... < xn = b; yi = f(xi)}

we consider the approximation of

I = I(a, b ; f) =

∫ b

a

f(x)dx.

Unlike numerical differentiation, the {xi} need not be equidistant. However,
unless stated otherwise, we shall assume to start with:

1. Equidistance of nodes, i.e., h = xi+1 − xi ∀ i, with nh = b− a.

2. Continuity of the function f over the interval of integration, i.e., f ∈
C(a, b).

© 2014 by Taylor & Francis Group, LLC

182 Introduction to Numerical Analysis and Scientific Computing

To derive all numerical integration formulae in this chapter, we proceed sys-
tematically by decomposing first the integral I into the sum of simple integrals.
Specifically, one has ∀n (even or odd):

I =

∫ x1

x0

f(x)dx+

∫ x2

x1

f(x)dx+ ...+

∫ xn

xn−1

f(x)dx =
n−1∑
k=0

∫ xk+1

xk

f(x)dx

and in particular when n is even, i.e., n = 2m:

I =

∫ x2

x0

f(x)dx+

∫ x4

x2

f(x)dx+ ...+

∫ x2m

x2m−2

f(x)dx =
m−1∑
k=0

∫ x2k+2

x2k

f(x)dx

Thus, we will be dealing with 2 types of formulae:

1. Simple Numerical integration formulae

Ik =

∫ xk+1

xk

f(x)dx ∀ n , or I ′k =

∫ x2k+2

x2k

f(x)dx ∀ n = 2m

Subsequently, we derive:

2. Composite Numerical integration formulae

I =

∫ b

a

f(x)dx =
n−1∑
k=0

Ik ∀ n , or I =

∫ b

a

f(x)dx =
m−1∑
k=0

I ′k ,∀ n = 2m

Since a definite integral is usually defined as a limit of a Riemann sum, and
more explicitly a sum of signed areas of rectangles, it is therefore natural to
assume that any summation of the form:

Cn =
n−1∑
k=0

hf(ck), xk ≤ ck ≤ xk+1,

could approximate I. The simplest choice for the sequence {ck} is one of the
following, leading to the rectangular rules.

5.6.1 The Rectangular Rules

The rectangular rules can be used for all positive integer values of n.

The Formulae

1. The left rectangular rule: for ck = xk, let Ak = hf(xk), then:

A(h) =
n−1∑
k=0

Ak =
n−1∑
k=0

hf(xk) = h
n−1∑
k=0

yk, (5.41)

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 183

2. The right rectangular rule: for ck = xk+1, let Bk = hf(xk+1), then:

B(h) =
n−1∑
i=0

Bk =
n−1∑
i=0

hf(xk+1) = h
n−1∑
k=0

yk+1, (5.42)

Error Analysis
It can be easily shown that such formulae provide O(h) approximations, in
the sense that:

f ∈ C1(a, b) : |I −An| = O(h) and |I −Bn| = O(h).

More specifically, through integration by parts formulae, one easily shows that:

Ik = Ak +

∫ xk+1

xk

(xk+1 − t)f
′
(t)dt (5.43)

and similarly that:

Ik = Bk +

∫ xk+1

xk

(xk − t)f
′
(t)dt (5.44)

leading therefore to the following error estimates:

Proposition 5.3 For f ∈ C1, the simple and composite rectangular rules
satisfy:

• Ik − Ak = h2

2 f
′
(ck), ck ∈ (xk, xk+1) and I − A(h) = (b−a)h

2 f
′
(c), c ∈

(a, b).

• Ik −Bk = −h
2

2 f
′
(dk), dk ∈ (xk, xk+1) and I −B(h) = (b−a)h

2 f
′
(d), d ∈

(a, b).

Proof. The results follow from first using the second mean-value theorem
on both

∫ xk+1

xk
(xk+1 − t)f

′
(t)dt and

∫ xk+1

xk
(xk − t)f

′
(t)dt and applying sub-

sequently the intermediate value theorem when evaluating:

I −A(h) =
n∑
k=1

(Ik −Ak) and I −B(h) =
n∑
k=1

(Ik −Bk).

© 2014 by Taylor & Francis Group, LLC

184 Introduction to Numerical Analysis and Scientific Computing

5.6.2 The Trapezoidal Rule

The trapezoid rule can be used for all positive integer values of n.

The Formulae
A simple geometric argument consists in approximating the surface between
the x-axis, the curve y = f(x) and the vertical lines x = xk and x = xk+1

by the area of the rectangular trapezoid which vertices are (xk, 0), (xk+1, 0),
(xk, f(xk)) and (xk+1, f(xk+1)). This leads first to the simple trapezoidal
rule, given by:

g =

∫ xk+1

xk

f(x)dx ≈ Tk =
h

2
(f(xk) + f(xk+1)), (5.45)

and subsequently to the composite trapezoid rule given by:

I ≡ I(a, b) =

∫ b

a

f(x)dx ≈ T (h) =
h

2
Σn−1
k=0 Tk, (5.46)

More precisely:

T (h) = Σn−1
k=0(f(xk) + f(xk+1)) =

h

2
(y0 + 2(y1 + ...+ yn−1) + yn).

Error Analysis
Note that:

Tk =

∫ xk+1

xk

pk,k+1(x)dx (5.47)

where pk,k+1(x) = yk+[xk, xk+1](x−xk), is the linear interpolating polynomial
to f(x) at xk and xk+1. Furthermore, it is well known (Section 4.5) that:

f(x) = pk,k+1(x) +
1

2
(x− xk)(x− xk+1)f ′′(c(x)),

with c(x) ∈ (xk, xk+1) depending continuously on x. By integration of this
identity over the interval (xk, xk+1), one has:

Ik = Tk +
1

2

∫ xk+1

xk

(x− xk)(x− xk+1)f ′′(c(x)).dx (5.48)

using then the second Mean Value Theorem, one gets:

Ik = Tk +
f ′′(ck)

2

∫ xk+1

xk

(x− xk)(x− xk+1) dx

leading to:

Ik = Tk −
h3

12
f ′′(ck), (5.49)

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 185

where ck ∈ (xk, xk+1). Turning up now to the composite trapezoid rule: by
summing up (5.49) over k and use of the intermediate value theorem, one gets
then an expression for the error term as follows:

I = I(a, b) =
n−1∑
k=0

Ik = T (h)− (b− a)

12
f ′′(c)h2 (5.50)

where c ∈ (a, b).

Proposition 5.4 Let the data Dn = {(xk, f(xk))|k = 0, 1, ..., n}, be a set
representing a function f in C2([a, b]), then:

I =

∫ b

a

f(x)dx = T (h) +O(h2),

with:

T (h) =
h

2

n−1∑
k=0

(f(xk) + f(xk+1)) = h[
(y0 + yn)

2
+
n−1∑
k=1

yk].

Remark 5.4 Note that the error analysis on Ik−Tk and I−T (h) can be also
done through the the two rectangular rules introduced in (5.41) and (5.42).

More specifically since:

Tk =
Ak +Bk

2
.

by averaging (5.43) and (5.44) one reaches:

Ik =
Ak +Bk

2
+

∫ xk+1

xk

(mk − t)f
′
(t)dt,

with mk = xk+xk+1

2 . Equivalently, one has:

Ik = Tk +

∫ xk+1

xk

(mk − t)f
′
(t)dt.

Assuming f ∈ C2, as in the above error analysis for the trapezoidal rule, we
show, through integration by parts, that the last identity yields:

Ik = Tk +
1

2

∫ xk+1

xk

((mk − t)2 − h2

4
)f
′′
(t)dt,

which can be rewritten in the same form as (5.48):

Ik = Tk +
1

2

∫ xk+1

xk

(xk − t)(xk+1 − t)f
′′
(t)dt. (5.51)

Use of the second mean value theorem yields the same result as (5.49).

The MATLAB code of the composite trapezoid rule is as follows:

© 2014 by Taylor & Francis Group, LLC

186 Introduction to Numerical Analysis and Scientific Computing

i xi f(xi)
0 0.00 1.0000000
1 0.25 0.98443593
2 0.50 0.93846981
3 0.75 0.86424228
4 1.00 0.76519769
5 1.25 0.64590609
6 1.50 0.51182767
7 1.75 0.36903253
8 2.00 0.22389078

TABLE 5.7: A copy of data for the function J0(x), x = 0.00, 0.25, ..., 2.00

Algorithm 5.2 Composite Trapezoid Rule
function I = CompositeTrapezoid(x,y)

% Input x = [a=x(1),...,x(n+1)=b] and y =[y(1),...,y(n+1)]

% where y represents the (n+1) values of a function f(x) at (n+1)

distinct points

% The x data is assumed equidistant

n = length(y) - 1 ; a=x(1) ; b=x(n+1) ; h=(b-a)/n;

I= h*(y(1) + y(n+1))/2 ;

Y = y(2:n);

I = I + 2*h*sum(Y);

5.6.3 The Midpoint Rectangular Rule

Such rule applies only in the case when the number of subintervals is even,
that is when n = 2m.

The Formulae
A simple geometric argument consists in considering the simple integral
I ′k =

∫ x2k+2

x2k
f(x) dx, as being the area of the region between the x- axis,

the curve y = f(x) and the vertical lines x = x2k and x = x2k+2. Such area
is then approximated by the surface of the rectangle which vertical sides are
x = x2k and x = x2k+2, and horizontal sides y = 0 and y = f(x2k+1). In
such case, the function values at the midpoints are known. For example, we
consider the case of the data in Table 5.1 which we reproduce for simplicity
of reading in Table 5.7. The set of midpoints is {x1, x3, x5, x7}.This leads first
to the simple midpoint rectangular rule, given by:

I ′k =

∫ x2k+2

x2k

f(x)dx ≈Mk = 2hf(x2k+1), k = 0, 1, ...,m− 1. (5.52)

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 187

and subsequently to the composite midpoint rule given by:

I ≡ I(a, b) =

∫ b

a

f(x)dx ≈M(h) = Σm−1
k=0 2hf(x2k+1) (5.53)

Error Analysis
The error analysis of this method is based on either one of Taylor’s formulae
where the expansion is made about the point x = x2k+1, yielding when the
function f is at least in C2[a, b]:

f(x) = f(x2k+1) + f ′(x2k+1)(x− x2k+1) + f ′′(ck(x))
(x− x2k+1)2

2
(5.54)

where ck(x) = x2k+1 + t(x− x2k+1), 0 < t < 1. Integration of equation (5.54)
from x2k to x2k+2 and the use of the second mean value theorem leads to:∫ x2k+2

x2k

f(x)dx = 2hf(x2k+1) + f
′′
(ck)

∫ x2k+2

x2k

(x− x2k+1)2

2
dx (5.55)

where ck is a point in (x2k, x2k+2). Hence:

I ′k = Mk + f
′′
(ck)

h3

3
(5.56)

Summing up (5.56) over k yields:

I(a, b) =
m−1∑
k=0

I ′k =
m−1∑
k=0

Mk +
h3

3

m−1∑
k=0

f
′′
(ck) = M(h) +

h3

3

m−1∑
k=0

f ′′(ck).

Using the intermediate value theorem, one has:

m−1∑
k=0

f
′′
(ck) = mf ′′(d) =

b− a
2h

f
′′
(d), d ∈ (a, b)

and therefore, noting that the length of the interval of integration is

nh = (2m)h = b− a

the following result is reached:

I = I(a, b) = M(h) +
(b− a)

6
f ′′(d)h2 (5.57)

Proposition 5.5 Let f be a function in C2[a, b], interpolating the set of data
Dn where n = 2m. Then

I =

∫ b

a

f(x)dx = M(h) +O(h2)

where

M(h) = 2h
m−1∑
k=0

f(x2k+1)

© 2014 by Taylor & Francis Group, LLC

188 Introduction to Numerical Analysis and Scientific Computing

The MATLAB code of the composite midpoint rule is as follows:

Algorithm 5.3 Midpoint Rule

function I = CompositeMidpoint(x, y)

% Input x = [x(1),...,x(n+1)] with x(1)=a, x(n+1)=b, and y =[y(1),...,y(n+1)]

% Output I = Approximation to the integral using the Composite Midpoint Rule

n=length(x)-1; m= length(y) - 1; a=x(1); b=x(n+1);

if n==m

h= (b-a)/n ;

% Test that n is an even integer

if floor(n/2) == ceil(n/2)

Y = y(2:2:n);

I = 2*h*sum(Y);

end

end

5.6.4 Recurrence Relation between Trapezoid and Midpoint
Rules

We prove now the following result.

Proposition 5.6 For n = 2m, T (h) = 1
2 (T (2h) +M(h)).

Proof. We start by writing:

I ≈ T (2h) = Σm−1
k=0 T

′

k = Σm−1
k=0 h(f(x2k + f(x2k+2))

On the other hand:

M(h) = Σm−1
k=0 Mk = 2hΣm−1

k=0 f(x2k+1)

To prove the recurrence relation, note that:

T (2h) +M(h) = h
m−1∑
k=0

(f(x2k) + f(x2k+2)) + 2f(x2k+1)

= h
m−1∑
k=0

[f(x2k) + f(x2k+1)] + [f(x2k+1) + f(x2k+2)]

= h
n−1∑
k=0

(f(xk) + f(xk+1)) = 2T (h).

This directly leads to the required result, that is:

T (h) =
1

2
(T (2h) +M(h)) (5.58)

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 189

Such formula is useful for example whenever one needs to compute a sequence
of trapezoid rule values:

Tk = {T (h0), T (h0/2), T (h0/4), ..., T (h0/2
k)}.

For such purpose, one starts with T (h0), then computes the sequence:

Mk = {M(h0/2), M(h0/4), ...,M(h0/2
k)}.

Use of (5.58) on T (h0) in addition toMk, allows one to obtain Tk by summing
up fewer terms than in computing such sequence directly.

5.6.5 Simpson’s Rule

Like the midpoint rule, Simpson’s rule is applicable only if the number
of subintervals is even (n = 2m). Its higher accuracy than the trapezoid
and midpoint rules requires more regularity conditions on f . Specifically, we
assume that

f(x) is at least in C4(a, b).

We derive Simpson’s rule as a 1
3 ,

2
3 linear combination of, respectively, the

trapezoid and midpoint rules.
More precisely for I ′k =

∫ x2k+2

x2k
f(x)dx, one has by extending Taylor’s series

expansion of f(x) to order 3, with mk = x2k+1 in (5.54):

f(x) = f(mk) + f ′(mk)(x−mk) + f
′′
(mk)

(x−mk)2

2
(5.59)

+f
′′′

(mk)
(x−mk)3

6
+ f (4)(ck(x))

(x−mk)4

24
,

with ck(x) ∈ (mk, x) continuously depending on x. Integrating from x2k to
x2k+2 and using the second mean value theorem, one obtains :

I ′k = Mk +
h3

3
f
′′
(x2k+1) +

f4(ck)

120
h5 = Mk +

h3

3
f
′′
(x2k+1) +O(h5) (5.60)

with ck ∈ (x2k, x2k+2).(Note that this integration process annihilates all inte-
gral terms of odd powers in (x−mk)). On the other hand, since:

T ′k = h(y2k + y2k+2),

then, by Taylor’s expansion, one has successively:

y2k+2 = f(x2k+1) + hf
′
(x2k+1) +

h2

2
f
′′
(x2k+1) +

h3

6
f
′′′

(x2k+1) +O(h5),

and:

y2k = f(x2k+1)− hf
′
(x2k+1) +

h2

2
f
′′
(x2k+1)− h3

6
f
′′′

(x2k+1) +O(h5).

© 2014 by Taylor & Francis Group, LLC

190 Introduction to Numerical Analysis and Scientific Computing

By adding the last 2 identities and multiplying by 2, one gets:

T ′k = h(y2k + y2k+2) = 2hf(x2k+1) + h3f
′′
(x2k+1) +O(h5).

Hence we obtain the relationship between T ′k and Mk:

T ′k = Mk + h3f
′′
(x2k+1) +O(h5) (5.61)

And therefore by combining algebraically (5.80) and (5.61), using:

3× (5.80)− (5.61),

one gets:

3I ′k − T ′k = 2Mk +O(h5) (5.62)

Define now the simple integration Simpson’s rule as:

Sk =
2

3
Mk +

1

3
T ′k =

h

3
(f(x2k) + 4f(x2k+1) + f(x2k+2)) (5.63)

then (5.62) is equivalent to:

I ′k = Sk +O(h5). (5.64)

Note that a more explicit expression of I ′k − Sk can be found by first noting
(see [21]):

I ′k − Sk =

∫ x2k+2

x2k

(f(x)− p2k 2k+1 2k+2(x))dx, (5.65)

where p2k 2k+1 2k+2(x) is the quadratic polynomial interpolating f(x) at x2k,
x2k+1 and x2k+2.
The right hand side in (5.65) can be handled in one of the following ways:

1. Given that from [21]:

f(x)−p2k 2k+1 2k+2(x) = (x−x2k)(x−x2k+1)(x−x2k+2)[x2k, x2k+1, x2k+2, x].

Then, letting w(x) =
∫ x
x2k

(t− x2k)(t− x2k+1)(t− x2k+2)dt and noting

that w(x2k) = w(x2k+2) = 0 one has, using integration by parts:

I ′k − Sk = −
∫ x2k+2

x2k

w(x)
d

dx
([x2k, x2k+1, x2k+2, x])dx,

given that if f ∈ C4, [x2k, x2k+1, x2k+2, x] ∈ C1.
As w(x) ≥ 0, using the second mean value theorem and the fact that:

for f ∈ C4 :
d

dx
([x2k, x2k+1, x2k+2, x] =

1

4!
f (4)(ck(x)),

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 191

(ck(x) depending continuously on x), one obtains:∫ x2k+2

x2k

w(x)
d

dx
([x2k, x2k+1, x2k+2, x])dx =

1

24
f (4)(ck)

∫ x2k+2

x2k

w(x)dx, ck ∈ (x2k, x2k+2).

Since
∫ x2k+2

x2k
w(x)dx = 4

15 , then:

I ′k − Sk = −h
5

90
f (4)(ck), ck ∈ (x2k, x2k+2) (5.66)

2. A second way to proceed is through the use of generalized divided dif-
ferences in writing:

f(x)−p2k 2k+1 2k+2(x) = (x−x2k)(x−x2k+1)(x−x2k+2)[x2k, x2k+1, x2k+1, x2k+2]+...

...+ (x− x2k)(x− x2k+1)2(x− x2k+2)
1

4!
f (4)(ck(x)),

with ck(x) depending continuously on x. Through integration from x2k

to x2k+2, use of:∫ x2k+2

x2k

(x− x2k)(x− x2k+1)(x− x2k+2)[x2k, x2k+1, x2k+1, x2k+2] = 0,

and of the second mean value theorem, one obtains as in (5.66):

I ′k − Sk =
1

4!
f (4)(ck)

∫ x2k+2

x2k

(x− x2k)(x− x2k+1)2(x− x2k+2)dx

= −h
5

90
f (4)(ck), ck ∈ (x2k, x2k+2).

Summing up (5.66) over k, one derives the composite Simpson’s rule,
namely:

I = I(a, b) =
m−1∑
k=0

(Sk −
h5

90
f (4)(ck)) = S(h)− (b− a)h4

180
f (4)(c), c ∈ (a, b),

(5.67)
with

S(h) =
m−1∑
k=0

(
2

3
Mk +

1

3
T ′k) =

2M(h) + T (2h)

3
.

Thus, the following error estimate is obviously deduced:

Proposition 5.7 Let f be a function in C4[a, b], interpolating the set of data
Dn. Then:

I = I(a, b) = S(h) +O(h4),

where S(h) = (y0 + 4
∑m−1
k=0 y2k+1 + 2(

∑m−1
k=1 y2k) + y2m)h3

© 2014 by Taylor & Francis Group, LLC

192 Introduction to Numerical Analysis and Scientific Computing

The MATLAB code of the composite Simpson’s rule is as follows:

Algorithm 5.4 Composite Simpson’s Rule

% Input x = [a=x(1),...,x(N+1)=b] , y =[y(1),...,y(N+1)]

% where y represents the (N+1) values of a function f(x) at (N+1) points

% N is the number of required subintervals

function I = CompositeSimpson(x,y,N)

N=length(y)-1 ;h= (b-a)/N ;

%Verify that the components of x are equi-spaced and test that N is an even integer

I = (y(1) + y(N+1)) ;

Y1 = y(3:2:N-1) ;

Y2 = y(2:2:N) ;

I1 = 2*sum(Y1) ;

I2= 4*sum(Y2) ;

I = (h/3)*(I+I1+I2) ;

5.7 Romberg Integration

Romberg integration is a Richardson extrapolation process applied to ac-
celerate convergence of the composite midpoint or trapezoidal rules. It is based
on the following facts (one of which is proved in the appendix of Section 5.8):

Proposition 5.8 Let h = b−a
2l

, l = 0, 1, 2, ... and f(.) be an analytical func-
tion, i.e., with continuous derivatives up to any order, then:

I = I(a, b) = T (h) + τ1h
2 + τ2h

4 + ..+ τjh
2j + ..., (5.68)

and

I = I(a, b) = M(h) + µ1h
2 + µ2h

4 + ..+ µjh
2j + ..., (5.69)

where the sequences {µj}, {τj} are independent from h, and depend on the
function f (and its derivatives) at a and b.

The Formulae

On the basis of (5.68), we can implement Richardson’s extrapolation, by writ-
ing this equation simultaneously for h and h

2 . Specifically, in that case we
obtain:

(a) I = T (h) + τ1h
2 + τ2h

4 + ...+ τjh
2j + ...

(b) I = T
(
h
2

)
+ τ1

(
h
2

)2
+ τ2

(
h
2

)4
+ ...+ τj

(
h
2

)2j
+ ...

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 193

In order to eliminate the dominant term of the error, by performing the alge-
braic operation 4(b)− (a), we obtain:

3I = 4T

(
h

2

)
− T (h) +O(h4)

and therefore:

I =
4T
(
h
2

)
− T (h)

3
+ t2h

4 + t3h
6 + ... (5.70)

where the sequence {ti} is independent of h.
Defining the first Romberg integration operator as:

R1(h/2) =
4T
(
h
2

)
− T (h)

3
or equivalently R1(h) =

4T (h)− T (2h)

3
(5.71)

equation (5.70) provides then an approximation to the integral I(a, b) of order
O(h4) verifying:

I = R1(h) +O(h4) (5.72)

In a similar way, we can derive a second Romberg integration formula by
writing again the equation above simultaneously in terms of h and h

2 :

(a) I = R1(h) + t2h
4 + t3h

6 + ...

(b) I = R1
(
h
2

)
+ t2

(
h
2

)4
+ t3

(
h
2

)6
+ ...

Performing the algebraic operation 16(b)− (a) yields:

15I = 16R1

(
h

2

)
−R1(h) +O(h6)

And therefore:

I =
16R1

(
h
2

)
−R1(h)

15
+ t3h

6 + t4h
8 + ... (5.73)

where the sequence {ti} is independent of h.
Defining the second Romberg integration operator as:

R2(h/2) =
16R1(h2)−R1(h)

15
or equivalentlyR2(h) =

16R1(h)−R1(2h)

15
(5.74)

equation (5.52) is then equivalent to:

I = R2(h) +O(h6) (5.75)

As for differentiation, this process can be repeated.
The first Romberg extrapolation formulae obtained based on the composite
trapezoid rule are as follows:

© 2014 by Taylor & Francis Group, LLC

194 Introduction to Numerical Analysis and Scientific Computing

h T (h) R1(h) R2(h) R3(h)
h0 ×

h0/2 × ×

h0

4 × × ×

h0

8 × × × ×

TABLE 5.8: A template to apply Romberg integration formulae

Proposition 5.9 Let f belong to C∞[a, b]

I = I(a, b) =

∫ b

a

f(x)dx =


R1(h) +O(h4)
R2(h) +O(h6)
R3(h) +O(h8)
...
Rk(h) +O(h2k+2)

with

R1(h) =
22T (h)− T (2h)

22 − 1
; R2(h) =

24R1(h)−R1(2h)

24 − 1
; R3(h) =

26R2(h)−R2(2h)

26 − 1
,

and in general the kth-order Romberg operator:

Rk(h) =
22kRk−1(h)−Rk−1(2h)

22k − 1

with an error of h2k+2. Table 5.8 provides a template for applying Romberg
integration based on the composite trapezoidal rule.

Remark 5.5 Referring to Proposition (5.6), since M(h) = 2T (h) − T (2h),
then one concludes that:

R1(h) =
4T (h)− T (2h)

3
=

2M(h) + T (2h)

3
= S(h)

meaning that Simpson’s Composite Numerical Integration formula is equiva-
lent to the first Romberg Trapezoidal Extrapolation formula.
In a consistent manner with the Composite Midpoint and Trapezoidal Rules,
one has when h = b−a

2l
, l = 0, 1, 2, ...:

I = I(a, b) = S(h) + s2h
4 + s6h

6 ++ sjh
2j +

where all the coefficients {si} are independent of h.
This allows starting a Romberg integration process beginning with composite
Simpson’s formula S(h).

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 195

5.8 Appendix: Error Expression for the Midpoint Rule
when h = b−a

2l

For the purpose of applying Richardson’s extrapolation (5.56) can be used
in its infinte series expansion form. Let h0 = (b − a). Then one has for m =
(a+ b)/2, M(h0) = h0f(m),

I = M(h0) + f (2)(m)
h3

0

24
+ ...+ f (2j)(m)

h2j+1
0

4j(2j + 1)!
+ ...

which is equivalent to:

I = M(h0) + h0Σj≥1γjf
(2j)(m)h2j

0 , (5.76)

Similarly to (5.31), there exists a sequence of universal constants {ai : i =
1, 2, ...}, such that:

f (2j)(m) =
f (2j−1)(b)− f (2j−1)(a)

2h0
+
∞∑
i=1

aif
(2j+2i)(m)h2i

0 . (5.77)

Combining (5.76) with (5.77), one deduces:

I = M(h0) + Σ∞j=1µjh
2j
0 , (5.78)

where:

µj = (

j∑
i

γj−ii)[f (2j−1)(b)− f (2j−1)(a)],

and the sequence γli defined by the recurrence relations:{
γ0
j = γj , (5.79.1)

γlj =
∑j−1
i=1 γ

l−1
i aj−1, l ≥ 1. (5.79.2)

(5.79)

Let

νj =

j∑
i

γj−ii .

Then (5.78) is equivalent to:

I = M(h0) + Σ∞j=1νj(f
(2j−1)(b)− f (2j−1)(a))h2j

0 . (5.80)

For h = h0

2 , let I1 =
∫m
a
f(x)dx and I2 =

∫ b
m
f(x)dx with M1(h0/2) and

M2(h0/2), respectively their approximations using the midpoint rule. Obvi-
ously, from (5.80), we have successively:

I1 = M1(h0/2) + Σ∞j=1νj(f
(2j−1)(m)− f (2j−1)(a))(h0/2)2j

© 2014 by Taylor & Francis Group, LLC

196 Introduction to Numerical Analysis and Scientific Computing

and
I2 = M2(h0/2) + Σ∞j=1νj(f

(2j−1)(b)− f (2j−1)(a))(h0/2)2j .

Adding up these 2 equations leads to:

I = I1+I2 = M1(h0/2)+M2(h0/2)+Σ∞j=1νj(f
(2j−1)(b)− f (2j−1)(a))(h0/2)2j ,

which is equivalent to:

I = M(h0/2) + Σ∞j=1νj(f
(2j−1)(b)− f (2j−1)(a))(h0/2)2j , (5.81)

i.e., (5.78) with h0, replaced by h0/2. This argument can be repeated prov-
ing (5.78) with h0, replaced by h0/2

l, l ≥ 0. This result can be generalized
to both trapezoid and Simpson’s rules and is of major importance for the
implementation of Romberg integration.

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 197

5.9 Exercises

Numerical Differentiation

1. Use the most accurate of the forward, backward or central difference
approximation formulae to determine the empty entries in the following
table:

i xi f(xi) f ′(xi)
0 0.0 5 .
1 0.1 4.960 .
2 0.2 4.842 .
3 0.3 4.651 .
4 0.4 4.393 .

2. Use the most accurate of the forward, backward or central difference
approximation formulae to determine the empty entries in the following
table:

i xi f(xi) f ′(xi)

0 −0.9 0.097 .
1 −0.7 −0.122 .
2 −0.5 −0.387 .
3 −0.3 −0.655 .
4 −0.1 −0.895 .

3. Let f(x) = ex
2

+ 2x. Fill in the empty entries in the table below to
approximate f ′(0), using the forward difference approximation formula
∆hf(0)

h .

h ∆hf(0)
h

0.125 .
0, 250 .
0.375 .
0.500 .
0.625 .

4. Let 0 < h ≤ 1 and D = φ(h)+d1h+d2h
2 +d3h

3−... where the constants
ci, ∀ i = 1, 2, ... are independent from h. What combination of φ(h) and
φ(h/2) should lead to a more accurate estimate of D?

5. Let 0 < h ≤ 1 and D = φ(h) + c1h
1/2 + c2h

2/2 + c3h
3/2 − ... where the

constants ci, ∀ i = 1, 2, ... are independent from h. What combination
of φ(h) and φ(h/2) should lead to a more accurate estimate of D?

6. Let φ(h) = L − O(hp), where 0 < h ≤ 1. Show that Richardson’s
extrapolation can be carried out for any two values h1 and h2 of h.

© 2014 by Taylor & Francis Group, LLC

198 Introduction to Numerical Analysis and Scientific Computing

7. Use Richardson extrapolation based on the central difference approxi-
mation formula to estimate the first derivative of y = cosx at x = π/4,
with initial value of h = π/3. Compare with the actual value of f ′(π/4),
by computing the absolute relative error in that case.

8. Use Richardson extrapolation based on the forward difference approx-
imation formula to estimate the first derivative of y = lnx at x = 4,
with initial value of h = 0.5. Compare with the actual value of f ′(4), by
computing the absolute relative error in that case.

9. Consider the following table of data associated with some unknown func-
tion y = f(x)

i xi yi

0 0.00 1.000
1 0.25 2.122
2 0.50 3.233
3 0.75 4.455
4 1.00 5.566
5 1.25 −1.000
6 1.50 −1.255
7 1.75 −1.800
8 2.00 −2.000

(a) Find an approximation to f ′(0.25) using successively the forward,
backward and central difference approximations if h = 0.25.

(b) Find approximations to f ′(1) using the central difference approx-
imation with h = 0.25, h = 0.50 then h = 1.00. Improve these
results by computing central difference Richardson’s extrapolation
approximations of the first and second order, ψ1

0.25(.) and ψ2
0.25(.)

to approximate f ′(1).

(c) Approximate f ′(0) and f ′(2) with h = 0.25.

(d) Find approximations to f
′′
(1) and f

′′′
(1) using the forward differ-

ence approximations, with h = 0.25.

10. Consider the following table of data for the function f(x)

i xi yi

0 0.000 1.0000000
1 0.125 1.1108220
2 0.250 1.1979232
3 0.375 1.2663800
4 0.500 1.3196170
5 0.625 1.3600599
6 0.750 1.3895079
7 0.875 1.4093565
8 1.000 1.4207355

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 199

Use the central difference formula to approximate f ′(0.5), followed by
Richardson’s extrapolation of the 1st and 2nd orders to improve the
results. Fill out the following table:

h ψh(.) ψ
(1)
h (.) ψ

(2)
h (.)

0.5 ×
0.25 × ×
0.125 × × ×

11. Based on the set of data of exercise 10:

(a) Calculate the second derivative f ′′(0.5), using the central difference
approximation with h = 0.25 and h = 0.125. Use Richardson’s
extrapolation operator of the first order, ψ1

0.125(f(0.5)) to improve
these results.

(b) Calculate the third derivative f
′′′

(1.000), using the backward dif-
ference approximation.

12. Based on the set of data of Exercise 10, use the Forward Difference
formula to approximate f ′(0), followed by Richardson’s extrapolation of
the first and second orders. Fill out the following table:

h φh(.) φ
(1)
h (.) φ

(2)
h (.)

0.5 ×
0.25 × ×
0.125 × × ×

13. Based on the set of data of the preceding exercise, use the backward
difference formula to approximate f ′(1), followed by Richardson’s ex-
trapolation of the first and second orders. Fill out the following table:

h χh(.) χ
(1)
h (.) χ

(2)
h (.)

0.5 ×
0.25 × ×
0.125 × × ×

14. Consider the following set of data:

Dn = {(xi, yi)|i = 0, ..., n with yi = f(xi)}

where the X-coordinates are equally spaced, that is xi = x0 + ih for
all i, with 0 < h ≤ 1 and n ≥ 4. Based on Dn:

© 2014 by Taylor & Francis Group, LLC

200 Introduction to Numerical Analysis and Scientific Computing

(a) Use Newton’s quadratic interpolating polynomial p012(x) to de-
termine its derivative p′012(x) and the value of p′012(x0) in terms
of the 3 points x0, x1 and x2 (“The 3 points formula”.) Express
Dh(x0) in terms of x0 and h. For notation purposes, let in that
case, p′012(x0) = Dh(x0).

(b) Given that f ∈ C3, the polynomial interpolation error is estimated
by the following identity:

f(x) = p012(x) +
1

3!
(x− x0)(x− x1)(x− x2)f (3)(c(x))

where c(x) ∈ (x0, x3) depends continuously on x.
Through differentiation of this identity, find the expression of the

Error if f ′(x0) ≈ p′012(x0), and show that this Error is O(h2).

(c) Given that

f ′(x0) = Dh(x0) + C1h
2 + C2h

3 + C3h
4 + ...+ Cih

i+1 +

where all the coefficients Ci are independent of h.
Apply Richardson’s extrapolation procedure once to improve the
approximation of f ′(x0), then define the first-order Richardson’s
extrapolation operator D1

h(x0). What is the order of the error if
f ′(x0) ≈ D1

h(x0).

15. Consider the following set of data:

i xi f(xi)
0 0.000 1.0000
1 0.125 1.1108
2 0.250 1.1979
3 0.375 1.2663
4 0.500 1.3196
5 0.625 1.3600
6 0.750 1.3895
7 0.875 1.4093
8 1.000 1.4207

Use this set of data and the results derived in the preceding exercise to
compute D1

0.125(0).

Numerical Integration

16. Derive the estimates on Ik − Ak, Ik − Bk, I − A(h) and I − B(h), in
Proposition 5.3.

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 201

17. Approximate I =
∫ b
a
f(x) dx based on the set of data given in Exercise

15, using the midpoint rectangular rule.

18. Use the composite midpoint rectangular rule to approximate I =∫ 2

0
e3x cos(2x)dx, if 9 partition points are used.

19. (a) Estimate the value of I =
∫ 1

0
(x2 + 1)−1dx by the composite mid-

point rule if 7 partition points are used.

(b) Find the absolute error in this approximation. Obtain also an upper
bound on the absolute error, if 7 partition points are used.

20. The Bessel function of order 0 is defined by the equation

J0(x) =
1

π

∫ π

0

cos(x sin θ)dθ

Approximate J0(1) by the composite midpoint rectangular rule using 5
equally spaced partition points, then find an upper bound to the error
in this approximation. (Let cos

√
2/2 = B.)

21. How many equi-spaced partition points should be used in the approxima-

tion of I =
∫ 1

0
e−x

2

dx by means of the composite midpoint rectangular

rule, if the absolute error |ε| ≤ 10−4

2 ?

22. Determine the value of h required to approximate I =
∫ 1

0
xexdx up to 3

decimal figures.

23. Establish “Composite Right” and “Left Rectangular Rules” that approx-

imate the definite integral I =
∫ b
a
f(x)dx, in case the partition points

are not equally spaced.

24. Let I =
∫ 2

0
x2e−x

2

dx.

(a) Use the midpoint rectangular rule to approximate I with 3 equally
spaced partition points.

(b) Derive the formulae of the Romberg operators applied to the mid-
point rectangular rule.

(c) Fill in the empty slots of the following table adequately.

h M(h) M1(h) M2(h)
h0 = 1

h0

2 = 0.5

h0

4 = 0.25

© 2014 by Taylor & Francis Group, LLC

202 Introduction to Numerical Analysis and Scientific Computing

25. (a) Estimate the value of I =
∫ 4

0
2xdx by the composite trapezoidal

rule if 9 partition points are used.

(b) Find the absolute error in this approximation. Obtain also an upper
bound on the absolute error in this case.

26. Determine the value of h if the composite trapezoid rule is to estimate∫ π
0

sinxdx with error ≤ 10−7? Will the integral be over or under esti-
mated?

27. Obtain an upper bound on the absolute error using 55 equally spaced

points, when we compute
∫ 6

0
sinx2dx by means of:

• the composite trapezoid rule

• the composite midpoint rectangular rule

• Simpson’s rule

28. Let f(x) = x2 cosx. Approximate I =
∫ π

0
f(x)dx by the composite

trapezoid rule using the partition points 0, π/2, π. Repeat by using par-
tition points 0, π/4, π/2, 3π/4, π. Use these results to apply Romberg
extrapolation approximation R1(π/4) and obtain a better evaluation
for I.

29. Consider the data given in Exercise 15. Fill in the following Table, using
h0 = 1.

h T (h) R1(h) R2(h) R3(h)
h0 = 1 ×

h0/2 = 0.5 × ×

h0

4 = 0.25 × × ×

h0

8 = 0.125 × × × ×

30. Consider the Bessel function J0(x) as defined in exercise 19.

(a) Approximate J0(1) by the trapezoid rule using 3 equally spaced
partition points, then find an upper bound to the absolute error in
this approximation. (Let cos 1 = A and cos

√
2/2 = B.

(b) Apply Romberg extrapolation procedure once on the trapezoidal
rule in (a), to obtain a better approximation to J0(1).

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 203

31. Let a = x0 < x1 < ... < xn = b be a set of partition points of the interval
[a, b], with hi = xi+1 − xi leading to a non-uniform spacing. Establish

the composite trapezoid rule formula to approximate
∫ b
a
f(x)dx, then

find an upper bound for the error term in this approximation.
Hint: On the interval [xk, xk+1], use:∫ xk+1

xk

f(x)dx = Tk+
1

2

∫ xk+1

xk

(x− xk)(x− xk+1)f
′′
(c(x))dx, c(x) ∈ (xk, xk+1).

32. Compute I =
∫ 2

0
x2 ln(x2 + 1)dx by Simpson’s rule using 5 partition

points in 2 different ways.

33. Find an approximate value of
∫ 2

1
x−1dx using the composite Simpson’s

rule with h = 0.25. Give a bound on the absolute error.

34. Let Dn = {(xi, yi)|i = 0, 1, ..., n = 2m, where yi = f(xi))} be a given
set of data, where the X-coordinates are equally spaced, and where n is
an even integer.

(a) Derive the first 2 Romberg approximation formulae: S1(h) and
S2(h), applied to the composite Simpson’s rule, given that:

I = S(h) + s1h
4 + s2h

6 ++ sjh
2j+2 +

(b) The next question deals with the following set of values for a func-
tion f(x), arranged in a table as follows:

i xi f(xi)
0 0.000 1.0000
1 0.125 1.0157
2 0.250 1.0645
3 0.375 1.1510
4 0.500 1.2840
5 0.625 1.4779
6 0.750 1.7551
7 0.875 2.1503
8 1.000 2.7183

In order to approximate
∫ 1

0
f(x) dx, based on Simpson’s rule and

the formulae obtained in (a), fill in the empty slots of the following
table adequately, carrying 5 significant figures with rounding to the
closest.

© 2014 by Taylor & Francis Group, LLC

204 Introduction to Numerical Analysis and Scientific Computing

h M(h) T (h) S(h) S1(h) S2(h)
h0 = 0.5

h0

2 = 0.25

h0

4 = 0.125

35. Consider the integral I = erf(x) = 2√
π

∫ x
0
e−t

2

dt

(a) Let I = erf(1). Approximate I up to 2 decimal figures by means
of the composite trapezoidal rule with equi-spaced partition points
if the exact value of I = 0.84. (Use rounding to the closest.)

(b) What is the number of partition points needed, if it is known that
the composite trapezoid rule has to be followed by the Romberg
process in order to improve the accuracy of the approximation in
the preceding question.

36. Consider the logarithmic integral defined by the equation

I = li(x) =

∫ x

2

1

ln t
dt

(a) Approximate li(11) by means of the composite Simpson’s rule using
9 equally spaced nodes, then apply Romberg extrapolation of 1st
order to improve the result.

(b) Compute the relative errors in both approximations, given that the
exact value li(11) = 5.5458.

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 205

5.10 Computer Projects

Exercise 1: Numerical Differentiation

Let x = [x1, x2, ..., xn] and y = [y1, y2, ..., yn] be 2 vectors of equal length
n, representing a set of n points in the plane:

Dn = {(xi, yi)|x1 < x2 < ... < xn ; i = 1, 2, ..., n}

where yi = f(xi) for some real valued function f .

1. Consider the set of points Dn as given above, where the x-components
are equally spaced with xi+1−xi = h; 0 < h ≤ 1, and let m = 1, 2 or 3.
Write a MATLAB

function d1 = ApproxDerivative(x,y,xi,m)

that approximates the first derivative of some unknown function f at
a node xi, using the backward difference formula (m = 1), the forward
difference formula (m = 2) or the central difference formula (m = 3).
Your function should check first the validity of the input and display an
error message if the derivative cannot be computed at node xi, that is
check the following:

• The components of x should be equally spaced

• 0 < h ≤ 1

• The value of m should be consistent with the index of xi. For
example, if m=1 then to apply the backward difference formula,
xi−1 should also be an element of x.

2. Write a MATLAB

function R = Richardson(f,a,h,k)

that takes as input: a function f , a real number a, 0 < h ≤ 1 being the
smallest value of the increment, and a positive integer k. This function
applies k iterations of Richardson’s extrapolation procedure to improve
the approximation of the first derivative f ′(a), using the central dif-
ference formula, and outputs the results in a square lower triangular
matrix R of size (k + 1× k + 1).
N.B. The entries of the first column of the matrix are approximations
to f ′(a) using the central difference approximation formulas for different
values of h.

3. Test each one of the functions above for 2 different test cases, and save
the results in a Word document.

© 2014 by Taylor & Francis Group, LLC

206 Introduction to Numerical Analysis and Scientific Computing

Exercise 2: Numerical Integration

The purpose of this exercise is to find approximations to the following def-
inite integrals using the composite trapezoidal rule followed by the Romberg
process:

1. I1 =
∫ 1

0
1

1+x2 dx = π

2. I2 =
∫ 2

1
1
x dx = ln 2 = 0.693147180559945...

3. The exact value of
∫∞

0
e−x

2

dx =
√
π

2 = 1.570796326794897.... , with

|
∫ ∞

0

e−x
2

dx − I3| < C × 10−16

where I3 =
∫ 6

0
e−x

2

dx.

1. Write a MATLAB

function I = CompositeTrapezoid(f,a,b,n,p)

that takes as inputs:

(a) a real valued function f

(b) 2 real numbers a and b, with a < b ∈ Df (domain of f)

(c) a positive integer n, representing the number of subintervals of
equal length determined by the partition points

{xi ; i = 0, 1, ..., n | a = x0, b = xn; h = xi+1 − xi}

(i.e., h = b−a
n , with 0 ≤ h ≤ 1.)

(d) p, a positive integer representing some precision fixed by the user

This function approximates the integral
∫ b
a
f(x) dx ≈ I using the com-

posite trapezoidal rule, and outputs I, displayed up to p decimal figures.
Hint: Use the MATLAB function num2str(I, p) to round the computed
I to the closest, up to p decimal figures.

2. Write a MATLAB

function R = RombergCompositeTrapezoid(f,a,b,n,p,tol)

that takes as inputs f, a, b, n, p as defined in part 1 above with n of
the form: n = 2k,(k positive integer), in addition to some tolerance
tol = 0.5 ∗ 10−10. This function applies j iterations of the Romberg
process based on the composite trapezoidal rule with j ≤ k, where j is
the first integer for which

|R(k + 1, j − 1)−R(k + 1, j)| < tol

and outputs the results in a matrix R of size k + 1× j + 1

© 2014 by Taylor & Francis Group, LLC

Numerical Differentiation and Integration 207

Hints:
• The successive values of h are {h = b−a

2i , for i = 0, 1, ..., k}
• The entries of the first column of the matrix are values of T (h), ∀ h
• The entries of the remaining columns of the matrix are values of
R1(h), ..., Rj(h),

3. Test the 2 MATLAB functions above on I1, I2 and I3. Save your results in
a Word document.

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

Chapter 6

Advanced Numerical Integration

6.1 Numerical Integration for Non-Uniform Partitions . 209
6.1.1 Generalized Formulae and Error Analysis . 209
6.1.2 The Case for Adaptive Numerical Integration . 211
6.1.3 Adaptive Simpson’s Integration . 211

6.2 Numerical Integration of Functions of Two Variables . 216
6.2.1 Double Integrals over Rectangular Domains . 216
6.2.2 Double Rectangular Rule . 217
6.2.3 Double Trapezoidal and Midpoint Rules . 218
6.2.4 Double Simpson’s Rule . 218
6.2.5 Error Estimates . 219
6.2.6 Double Integrals over Convex Polygonal Domains 221

6.3 Monte Carlo Simulations for Numerical Quadrature . 226
6.3.1 On Random Number Generation . 226
6.3.2 Estimation of Integrals through Areas and Volumes 227
6.3.3 Estimating Mean Values . 230

6.4 Exercises . 232
6.5 Computer Exercises . 234

6.1 Numerical Integration for Non-Uniform Partitions

In what has preceded, we have considered numerical integration on a set
of equidistant points {xi}, whereas xi+1 − xi = h, ∀i. The formulae derived
were well suited for the cases when a function f(x) is given through a table
Dn = {(xn, yn = f(xn))}.
Naturally, each of the formulae we have derived can be generalized to non-
uniform partitions {xi}.

6.1.1 Generalized Formulae and Error Analysis

1. In the case of the trapezoidal rule, the number of intervals is n and such
partitions satisfy:

xi − xi−1 = hi, with hi 6= hj , for at least one pair (i, j), i 6= j

Let also:

h = max
1≤i≤n

{hi}.

209

© 2014 by Taylor & Francis Group, LLC

210 Introduction to Numerical Analysis and Scientific Computing

Written in that context, the composite trapezoidal rule becomes:

T (h) =
n∑
i=1

Ti =
1

2

n∑
i=1

hi(yi−1 + yi)

with the local error (for the simple trapezoid rule) expressed as previ-
ously:

Ii = Ti −
h3
i

12
f ′′(ci), i = 1, ..., n, ci ∈ (xi−1, xi),

while, using the Intermediate Value Theorem, the global error for T (h)
would become:

I − T (h) = −h
3
1 + h3

2 + ...+ h3
n

12
f ′′(c), with x0 < c < xn,

that leads to:

|I−T (h)| ≤ h2

12
(h1+h2+...+hn) max

x∈(a,b)
|f ′′(x)| = h2

12
(b−a) max

x∈(a,b)
|f ′′(x)|.

2. Similar considerations may be carried out also for the midpoint and
Simpson’s rules. In that case, we maintain the constraint of partition-
ing (a, b) into an even number of subintervals (n = 2m) in the following
way:

a = x0 < x1 < ... < x2n−1 < x2n = b, with x2i−1 =
x2i−2 + x2i

2
, i = 1, 2, ..,m.

Moreover:

x2i − x2i−2 = 2hi, with hi 6= hj , for at least one pair (i, j), i 6= j.

As above, let also:
h = max

i
{hi}

The expressions of the composite midpoint and Simpson’s formulae be-
come respectively:

M(h) = 2
m∑
i=1

hiy2i−1

and

S(h) =
1

3

m∑
i=1

hi(y2i−2 + 4y2i−1 + y2i) =
1

3
(M(h) + T (2h)). (6.1)

Furthermore, the local errors for the simple rules remain unchanged,
specifically: ∫ x2i

x2i−2

f(x)dx = 2hf(x2i) +
h3
i

12
f
′′
(ci),

© 2014 by Taylor & Francis Group, LLC

Advanced Numerical Integration 211

and ∫ x2i

x2i−2

f(x)dx =
hi
3

(y2i−2 + 4y2i−1 + y2i)−
h5
i

90
f
′′
(ci). (6.2)

The bounds for the global errors can be easily derived, yielding respec-
tively:

|I −M(h)| ≤ h2

6
(b− a) max

x∈(a,b)
|f ′′(x)|, (6.3)

and

|I − S(h)| ≤ h4

180
(b− a) max

x∈(a,b)
|f (4)(x)|. (6.4)

6.1.2 The Case for Adaptive Numerical Integration

Adaptive numerical integration consists in “adapting” the partition of the
interval (a, b) to the behavior of the function f(x). To illustrate that point,
consider applying the non-uniform global Simpson’s formula (6.1) to approx-

imate the integral I =
∫ b
a
f(x) dx and let us assume that there exists some

subinterval (d, b) of (a, b) wherein the behavior of f(x) ≈ p(x) with p(x) ∈ P3,
i.e., a polynomial of degree at most 3. Since from (6.2), one has:

I − S(h) = − 1

90

m∑
i=1

h5
i f

(4)(ci), ci ∈ (x2i−2, x2i),

then one can select the partition of {xi}i, so that x2m−2 = d and x2m = b, the
remaining points {xi|i = 0, 1...2m−2} subdividing uniformly or non-uniformly
the interval (a, d).
To illustrate this situation, consider the function:

f(x) = x5(x− 5)2e−x,

which graph is given in Figure 6.1. Obviously, as indicated by the graph of
f , the function is very close to zero on [20, 40], but has significant variations

over [0, 20]. Evaluating I =
∫ 40

0
x5(x− 5)2e−xdx by placing a uniform mesh

on (0, 40) would not be an appropriate strategy, as one needs a highly refined
mesh on (0, 20) and a coarse grid on (20, 40). For that purpose, it would
be convenient to consider methods that would adapt the partitioning [0, 40]
according to the behavior of f(x) as to be explained in the following section.

6.1.3 Adaptive Simpson’s Integration

Thus, Adaptive Numerical Integration is motivated by the need to compute
an accurate approximation to I, taking into account a user defined computa-
tional tolerance, εtol, in the sense that one seeks Ic ≈ I, such that:

|I − Ic| ≤ εtol, (absolute error)

© 2014 by Taylor & Francis Group, LLC

212 Introduction to Numerical Analysis and Scientific Computing

FIGURE 6.1: Graph of f(x) = x5(x− 5)2e−x

or
|I − Ic|
|I|

≤ εtol (relative error).

Considering that the adaptive algorithm is one that must take into account
whether f(x) has sharp variations on subintervals of (a, b), and smooth ones on
the remaining ones, then if the approximation error is to be evenly distributed,
the partition points should be generated adaptively so that fine partitions,
with small step sizes, are chosen in the first case, and coarse partitions, with
larger step sizes, are used in the second one.
One of the methods used for such purpose is the recursive “Adaptive Simpson’s
Rule” that evaluates I in view of reaching the user’s fixed computational
tolerance (absolute or relative) tol. In case of relative computational tolerance,
a “rough” estimate Iest of I would also be needed. One choice for Iest would
be for example, b−a

6 (f(a) + 4f(a+b
2) + f(b)).

In the adaptive process, the steps of the recursive algorithm are as follows:

a. Divide the initial interval [a, b] into 2 subintervals of equal length, with
h = (b− a)/2.

b. Compute S(h) and S(h/2).

c. As h = b−a
2k

, then using a similar argument to that of Proposition 5.8
(Section 5.8 in Chapter 5), one proves for f ∈ C6:

I = S(h) + αh4 +O(h6), (6.5)

where α is independent from h. Using Richardson extrapolation on (6.5),
one proves that:

I − S(h/2) =
S(h/2)− S(h)

15
+O(h6). (6.6)

© 2014 by Taylor & Francis Group, LLC

Advanced Numerical Integration 213

Thus S(h/2)−S(h)
15 provides the O(h4), principal part of the error in

I − S(h/2). Hence, one of 2 following situations may occur, using abso-
lute (or relative) errors:

c.1 |S(h/2)−S(h)
15 | ≤ tol, (or |S(h/2)−S(h)

15Iest
| ≤ tol).

c.2 |S(h/2)−S(h)
15 | > tol, (or |S(h/2)−S(h)

15Iest
| > tol).

In the first occurrence, we approximate I by S = S(h/2) and stop the
process.
Otherwise, letting m = a+b

2 , we proceed with recurring the process by
writing:

I = I1 + I2 =

∫ m

a

f(x)dx+

∫ b

m

f(x)dx,

and then apply a. - b. - c. in parallel on I1 and I2, in view of reaching
respectively S1 and S2, such that (in case of absolute errors):

|Ik − Sk| ≤ tol/2 (|Ik − Sk
Iest

| ≤ tol/2), k = 1, 2.

Clearly, |Ik − Sk| ≤ tol/2, k = 1, 2 implies in case of use of absolute
errors:

|I − (S1 + S2)| ≤ |I1 − S1|+ |I2 − S2| ≤ tol,

or when using relative errors:

|I − (S1 + S2)

Iest
| ≤ |I1 − S1

Iest
|+ |I2 − S2

Iest
| ≤ tol,

A pseudo code for such procedure that uses relative errors would be as follows:

function S=RecurAdaptSimp(f,a,b,tol,Est)

h=(b-a)/2

Evaluate S(h) and S(h/2)

If |S(h)-S(h/2)|/|Est|>15*tol

> m=(a+b)/2

> S1=RecurAdaptSimp(f,a,m,tol/2,Est)

> S2=RecurAdaptSimp(f,m,b,tol/2,Est)

> S=S1+S2

else

> S=S(h/2)

end

© 2014 by Taylor & Francis Group, LLC

214 Introduction to Numerical Analysis and Scientific Computing

A detailed MATLAB implementation is as follows.

Algorithm 6.1 Adaptive Simpson’s Integration (Recursive Version)

function [S,x]=RecurAdaptSimp(f,a,b,tol,i,Est)

% Input: Est, an estimate of the value of I

% the Integral of f(x) from a to b

% tol: Relative tolerance

% i: level of recurrence

% Output: S: approximation of I, such that: |(I-S)/Iest|<=tol

% x: the partition points

% Initialize parameters

x=[];%No partition of the interval (a,b)

h=(b-a);% Initial value of h

% Get S(h) and S(h/2)

m=(a+b)/2;

m1=(a+m)/2;

m2=(b+m)/2;

T1=h*(f(a)+f(b))/2;%Evaluate T(h)

M1=h*f(m);%Evaluate M(h/2)

T=(T1+M1)/2;%Evaluate T(h/2)

S1=(T1+2*M1)/3;%Evaluate S(h/2)

M=h*(f(m1)+f(m2))/2;%Evaluate M(h/4)

S=(T+2*M)/3;%Evaluate S(h/4)

x=[x m1 m2];%Update x with m1 and m2

if abs((S-S1)/Est)>15*tol% if |(S(h)-S(h/2))/Iest|>tol

i=i+1;%raise recurrence level by 1

%Apply AdaptSimp on (a,m) and (m,b)

[S1,x1]=RecurAdaptSimp(f,a,m,tol/2,i,Est);

[S2,x2]=RecurAdaptSimp(f,m,b,tol/2,i,Est);

S=S1+S2;x=[x1 x2];%Updare S and x

i=i-1;%decrease recurrence level by 1

end

if i==1 % Final update at recurrence level 1

x=[x m];% Update x with m

x=sort(x);% sort x

x=[a x b];% Update x with a and b

end

Example 6.1 Consider approximating I =
∫ 40

0
100xe−xdx which exact value

can be verified to be 100− 4100 ∗ e−40 ≈ 100.

Proceeding by a standard Simpson’s rule on a uniform mesh h can prove to
be catastrophic! For relative computational tolerances εtol, one computes from
(5.67) the corresponding minimum number of uniform intervals. The results
are indicated in Table 6.1. Obviously, such summations with high number of

© 2014 by Taylor & Francis Group, LLC

Advanced Numerical Integration 215

εtol nmin(εtol)
0.5× 10−4 1229
0.5× 10−5 2185
0.5× 10−6 3884
0.5× 10−7 6907
0.5× 10−8 12283
0.5× 10−9 21841
0.5× 10−10 38840

TABLE 6.1: Minimum number of intervals for uniform partitions using Simp-

son’s rule to compute I =
∫ 40

0
100xe−xdx up to a relative tolerance εtol

εtol n(εtol) minh maxh
0.5× 10−4 34 7.8125000×10−2 10
0.5× 10−5 58 3.9062500×10−2 10
0.5× 10−6 94 1.9531250×10−2 10
0.5× 10−7 166 9.765625×10−3 10
0.5× 10−8 286 4.8828125×10−3 5
0.5× 10−9 496 4.8828125×10−3 5
0.5× 10−10 912 2.4414062×10−3 5

TABLE 6.2: Number of intervals as a function of the user’s tolerance εtol in
adaptive Simpson’s rule

elements would lead to an excessive round-off error propagation. On the other
hand, adaptive numerical integration using the MATLAB program:

RecurAdaptSimp(a, b, tol, i, Est) with tol = εtol

would provide a comparably moderate number of intervals n(εtol) as shown
in Table 6.2, where we also provide in the third and fourth columns
min1≤i≤n {hi} and max1≤i≤n {hi}. This asserts the strength of the method
to automatically generate a highly non-uniform partition of the interval (a, b).
Such features speak in favor of Adaptive Numerical Integration in terms of
flexibility and high accuracy for minimal costs. On the other hand, the method

introduces the feasibility of approximating I =
∫ b
a
f(x)dx, based on a set of

points that are not uniformly distributed over (a, b).

Remark 6.1 The MATLAB command quad is a notorious implementation of
adaptive Simpson’s approximation for definite integrals.

© 2014 by Taylor & Francis Group, LLC

216 Introduction to Numerical Analysis and Scientific Computing

6.2 Numerical Integration of Functions of Two Variables

Consider the double integral:

I =

∫ ∫
Ω

f(x, y)dxdy,

where Ω ⊂ R2 with boundary Γ = ∂Ω. Assume also that f(x, y) is at least
continuous on Ω.
The methods derived so far are difficult to generalize in a systematic way to
double integration approximations over all domains Ω ⊂ R2. The simplest
case would be when Ω is a rectangular region.

6.2.1 Double Integrals over Rectangular Domains

Let Ω = (a, b)× (c, d), in which case, if we define the rectangle corners by:

M = (a, c), N = (b, c), P = (b, d), Q = (a, d).

Then:

Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4,

with

Γ1 =
−−→
MN, Γ2 =

−−→
NP, Γ3 =

−−→
PQ and Γ4 =

−−→
QM.

In this case, I may be written as:

I =

∫ b

a

∫ d

c

f(x, y)dydx =

∫ b

a

[

∫ d

c

f(x, y)dy] dx (6.7)

or equivalently:

I =

∫ b

a

F (x)dx (6.8)

with:

F (x) =

∫ d

c

f(x, y)dy. (6.9)

We have thus reduced the initial double integral into two simple integrals (6.8)
and (6.9). To obtain approximations formulae for I we start by partitioning
each of (a, b) and (c, d), using respectively n and m subintervals, as follows:

a = x0 < x1 < ... < xn = b; c = y0 < y1 < ... < ym = d,

with xi+1−xi = hi+1, ∀i = 0, ..., n−1 and yj+1−yj = kj+1, ∀j = 0, ...,m−1.
A display of such partitions can be found in Figure 6.2.

© 2014 by Taylor & Francis Group, LLC

Advanced Numerical Integration 217

FIGURE 6.2: A partition of the rectangle MNPQ with m = n = 8

6.2.2 Double Rectangular Rule

We generalize first the composite rectangular rule (5.41) as follows:

1. I =
∫ b
a
F (x)dx ≈

∑n
i=1 hiF (xi−1).

2. F (xi−1) =
∫ d
c
f(xi−1, y)dy ≈

∑m
j=1 k,jf(xi−1, yj−1).

Combining both approximations yields:∫ b

a

∫ d

c

f(x, y)dxdy ≈
n∑
i=1

m∑
j=1

hikjf(xi−1, yj−1). (6.10)

In case the partitioning points of (a, b) and (c, d) are equally spaced, i.e.,

hi = h =
b− a
n

,∀i and kj = k =
d− c
m

, ∀j,

then: ∫ b

a

∫ d

c

f(x, y)dxdy ≈ hk
n∑
i=1

m∑
j=1

f(xi−1, yj−1).

Under these conditions, the two-dimensional composite rectangular rule would
be given by:

A(h, k) = hk
n∑
i=1

m∑
j=1

f(xi−1, yj−1) (6.11)

© 2014 by Taylor & Francis Group, LLC

218 Introduction to Numerical Analysis and Scientific Computing

6.2.3 Double Trapezoidal and Midpoint Rules

A similar derivation may be also carried out for the composite trapezoidal
rule. We leave out the details of the derivation and write directly the numerical
integration formula::
T (h, k) =

hk

4

n∑
i=1

m∑
j=1

(f(xi−1, yj−1) + f(xi−1, yj) + f(xi, yj−1) + f(xi, yj)). (6.12)

In case n and m are even integers, the composite midpoint rectangular
rule formula can be easily derived and given by:

M(h, k) = 4hk

n/2∑
i=1

m/2∑
j=1

f(x2i−1, y2j−1) (6.13)

6.2.4 Double Simpson’s Rule

As for the composite Simpson’s rule, with n and m being even integers,
the double integration formula is derived as follows. In a first step, we use
composite Simpson’s integration with respect to y. This gives:

∫ d

c

f(x, y) dy ≈ k

3

m/2∑
j=1

f(x, y2j−2) + 4f(x, y2j−1) + f(x, y2j).

Letting now:

Fk(x) =
k

3

m/2∑
j=1

f(x, y2j−2) + 4f(x, y2j−1) + f(x, y2j),

then proceeding with a composite Simpson’s integration with respect to x on
Fk(x), we obtain:

∫ b

a

Fk(x)dx ≈ h

3

n/2∑
i=1

Fk(x2i−2) + 4Fk(x2i−1) + Fk(x2i).

Thus we can write:

I ≈
∫ b

a

Fk(x)dx ≈ S(h, k),

with:
S(h, k) =

S(h, k) = S1(h, k) + S2(h, k) + S3(h, k). (6.14)

© 2014 by Taylor & Francis Group, LLC

Advanced Numerical Integration 219

with:

S1(h, k) =
hk

9

n/2∑
i=1

[f(x2i−2, y2j−2) + f(x2i−2, y2j) + f(x2i−2, y2j−2) + f(x2i, y2j)],

S2(h, k) =
4hk

9

n/2∑
i=1

[f(x2i−2, y2j−1) + f(x2i−1, y2j) + f(x2i, y2j−1) + f(x2i−1, y2j−2)],

and:

S3(h, k) =
16hk

9

m/2∑
j=1

f(x2i−1, y2j−1).

6.2.5 Error Estimates

Error estimates can also be easily derived for the approximating formu-
lae (6.11), (6.12), (6.13) and (6.14). We start with an error analysis for the
rectangular rule (6.11).

Theorem 6.1 For fx and fy ∈ C(Ω), i.e., f ∈ C1(Ω), the composite rectan-
gular approximation is O(h+ k):

I = A(h, k) + (b− a)(d− c)(h∂f
∂x

(ξ, η) + k
∂f

∂y
(ξ1, η1)) (6.15)

where (ξ, η) and (ξ1, η1) are in the rectangle (a, b)× (c, d).

Proof. Starting with:

I =

∫ b

a

F (x)dx =
n∑
i=1

hF (xi−1) + h(b− a)F ′(ξ), ξ ∈ (a, b),

where F ′(ξ) =
∫ d
c
∂f
∂x (ξ, y)dy, then using the mean-value theorem, we obtain:

F ′(ξ) =

∫ d

c

∂f

∂x
(ξ, y)dy = (d− c))∂f

∂x
(ξ, ηi).

Hence:

I =

∫ b

a

F (x)dx =
n∑
i=1

hF (xi−1)+h(b−a)
n∑
i=1

∂f

∂x
(ξ, ηi), (ξ, ηi) ∈ (a, b)×(c, d).

One concludes, using the intermediate value theorem, that:

I =
n∑
i=1

hF (xi−1) + h(b− a)(d− c)∂f
∂x

(ξ, η), (ξ, η) ∈ (a, b)× (c, d). (6.16)

© 2014 by Taylor & Francis Group, LLC

220 Introduction to Numerical Analysis and Scientific Computing

Furthermore, as:

F (xi−1) =
∫ d
c
f(xi−1, y)dy = ..

..k
n∑
j=1

f(xi−1, yj−1) + k(d− c)∂f
∂y

(xi−1, ζi), ζi ∈ (c, d), (6.17)

then using the definition of A(h, k) and combining (6.16) and (6.17), we reach:

I = A(h, k) + h(b− a)(d− c)∂f
∂x

(ξ, η) + hk(d− c)
n∑
i=1

∂f

∂y
(xi−1, ζi).

By applying a second time the intermediate value theorem on
∑n
i=1

∂f
∂y (xi−1, ζi),

one gets (6.15).
Similar procedures can be conducted to the other integration formulae: (6.12),
(6.13) and (6.14). In what follows we give the results of such analyses.

1. For f ∈ C2(Ω), the composite trapezoid and midpoint rectangular ap-
proximations satisfy the following estimates:

I = T (h, k)− (b− a)(d− c)
12

(h2 ∂
2f

∂x2
(ξ, η) + k2 ∂

2f

∂y2
(ξ1, η1)), (6.18)

and similarly we obtain:

I = M(h, k) +
(b− a)(d− c)

6
(h2 ∂

2f

∂x2
(ξ, η) + k2 ∂

2f

∂y2
(ξ1, η1)) (6.19)

i.e., I = T (h, k) +O(h2) +O(k2) and I = M(h, k) +O(h2) +O(k2)

2. Also, for f ∈ C4(Ω), the composite double Simpson’s rule satisfies the
following estimate:

I = S(h, k)− (b− a)(d− c)
180

(h4 ∂
4f

∂x4
(ξ, η) + k4 ∂

4f

∂y4
(ξ1, η1)) (6.20)

i.e., I = S(h, k) +O(h4 + k4).

Note that in (6.18), (6.19) and (6.20), the pairs (ξ, η) and (ξ1, η1) refer to
generic points in Ω.
We illustrate through a case that uses the composite Simpson’s rule.

Example 6.2 Compute I =
∫ 2.5

0

∫ 1.4

0
x4y4 dy dx, using the composite Simp-

son’s rule with (m,n) ∈ {(4, 4), (8, 8), (16, 16), (64, 64)}.

Note that the exact value of I is 1
25 (1.4)5(2.5)5 = 21.00875. The results are

summarized in Table 6.3.

© 2014 by Taylor & Francis Group, LLC

Advanced Numerical Integration 221

(m,n) S(h, k) |I − S(h, k)|
(4, 4) 21.118313 5.215115× 10−3

(8, 8) 21.015589 3.255473× 10−4

(16, 16) 21.009177 2.03452× 10−5

(64, 64) 21.008752 7.94729× 10−8

TABLE 6.3: Results of use of double Simpson’s rule to approximate∫ 2.5

0

∫ 1.4

0
x4y4 dy dx = 21.00875

6.2.6 Double Integrals over Convex Polygonal Domains

Delaunay Meshing
For the general case of

∫
Ω
f(x, y)dxdy where Ω is a connected domain with

a boundary ∂Ω that consists of a continuous finite sequence of smooth arcs,
current practices start by “meshing” the domain Ω into triangles. More specifi-
cally, “meshing” Ω, consists in subdividing it into a set T of “triangles.” In this
chapter, we restrict our presentation to convex polygonal domains which
can be easily“meshed” using the MATLAB delaunay command (for more de-
tails see [20], [13].)
A Delaunay triangulation starts with a set of nodes P = {P1, P2, ..., PN}
in Ω and its boundary ∂Ω. It then generates a set T = T (P), such that, if we
let C(T) be the circumcircle associated with each T ∈ T which vertices are
M, N, P ∈ P, then:

C(T) contains no node of P in its interior. (6.21)

In that way, Delaunay triangulations tend to maximize the minimum angle
of all the angles of the triangles in T and therefore avoid “skinny” or “flat”
triangles. In addition T = {Ti | 1 ≤ i ≤M} satisfies the following properties:

∀i, j ∈ {1, 2, ...,M} Ti ∩ Tj =


triangle itself when i = j

vertex

one side

φ empty set

(6.22)

Note that the 2 triangles in Figure 6.3 do not conform to such meshing con-
straint. In addition to (6.21) and (6.22), T satisfy:⋃

i

Ti = Ω. (6.23)

Thus T covers Ω and one can write:∫
Ω

f(x, y)dxdy =
∑
T∈T

∫
T

f(x, y)dxdy.

© 2014 by Taylor & Francis Group, LLC

222 Introduction to Numerical Analysis and Scientific Computing

FIGURE 6.3: Nonconforming triangles in meshing a domain

FIGURE 6.4: Plot of a two dimensional domain with a polygonal boundary
∂Ω={(0,0),(0.4,0),(1,0.3),(1,0.7),(0.4,1),(0,1)}

We consider the following example of a hexagonal domain Ω with:

∂Ω = {(0, 0), (0.4, 0), (1, 0.3), (1, 0.7), (0.4, 1), (0, 1)}.

Figure 6.4 plots the boundary of this hexagonal domain: We mesh this domain
using a recursive procedure that starts with a “coarse mesh” based on the set
of nodes

P1 = {(0, 0), (0.4, 0), (1, 0.3), (1, 0.7), (0.4, 1), (0, 1), G1 = (0.4, 0.5)},

consisting of the vertices of Ω in addition to G1, its barycenter (center of grav-
ity). Applying MATLAB delaunay command on P1 followed by the triplot

command leads to T1, a triangulation consisting of 6 triangles, using a G1

as a common vertex. The resulting meshing of Ω is shown in Figure 6.5. To
refine T1 we introduce the edges midpoints of each of its triangles, then pro-
ceeding again with the delaunay command followed by triplet which gives
a new mesh T2, consisting of 26 triangles, as shown in Figure 6.6. The pre-
vious steps are the core of our recursive procedure that allows refinement
up to higher orders. For instance, Figure 6.7 provides a mesh of 100 trian-
gles resulting from subdividing the sides of the triangles in T2. The following

© 2014 by Taylor & Francis Group, LLC

Advanced Numerical Integration 223

FIGURE 6.5: A coarse mesh for the polygonal domain with boundary ∂Ω =
{(0, 0), (0.4, 0), (1, 0.3), (1, 0.7), (0.4, 1), (0, 1)}

FIGURE 6.6: A 26 triangles mesh for the polygonal domain with boundary
∂Ω = {(0, 0), (0.4, 0), (1, 0.3), (1, 0.7), (0.4, 1), (0, 1)}

FIGURE 6.7: A 100 triangles mesh for the polygonal domain with boundary
∂Ω = {(0, 0), (0.4, 0), (1, 0.3), (1, 0.7), (0.4, 1), (0, 1)}

© 2014 by Taylor & Francis Group, LLC

224 Introduction to Numerical Analysis and Scientific Computing

algorithms generate such recursive processes starting with the initial coarse
meshing:

Algorithm 6.2 Recursive Meshing of a Polygon

function [tri,x,y]=RecurProcess(x0,y0,reforder)

% Input: A polygonal domain with vertices coordinates given by (x0,y0)

% Output: A set of nodes [x,y] resulting from midedges refinement

% of the polygon and a Delaunay triangulation tri based on [x,y]

%Seek center of gravity of the polygon

m=length(x0); %equal to length(y0)

xg=0;yg=0;

for k=1:m

xg=xg+x0(k);

yg=yg+y0(k);

end

xg=xg/m;

yg=yg/m;

x=[x0 xg];y=[y0 yg];

tri=delaunay(x,y);

for k=1:reforder

[tri,x,y]=MidEdges(tri,x,y);

end

triplot(tri)

Algorithm 6.2 uses the “Mid-edging” procedure 6.3 described as follows.

Algorithm 6.3 Mid-edging a Triangulation

function [tri1,x1,y1]=MidEdges(tri,x,y)

% Input: A triangulation tri based on the set of nodes (x,y)

% output: A delaunay triangulation tri1 based on (x,y) in addition

% to midedges

[m,n]=size(tri);

% Get the mid points of all edges

mdx=zeros(3*m,1);mdy=zeros(3*m,1);

for k=1:m

p=tri(k,1);q=tri(k,2);r=tri(k,3);

mdx(3*k-2)=(x(p)+x(q))/2;mdx(3*k-1)=(x(q)+x(r))/2;mdx(3*k)=(x(r)+x(p))/2;

mdy(3*k-2)=(y(p)+y(q))/2;mdy(3*k-1)=(y(q)+y(r))/2;mdy(3*k)=(y(r)+y(p))/2;

end

x=[x;mdx];y=[y;mdy];

Mdp=unique([x y],’rows’);% Eliminate any redundancy in the set of nodes [x,y]

x1=Mdp(:,1);

y1=Mdp(:,2);

tri1=delaunay(x1,y1);

© 2014 by Taylor & Francis Group, LLC

Advanced Numerical Integration 225

Approximation of double integrals using triangular meshing
Since: ∫

Ω

f(x, y)dxdy =
∑
T∈T

∫
T

f(x, y)dxdy,

the problem reduces to an approximation of a double integral over each of the
triangles.
In case, M, N, P are the vertices of a triangle T , then a simple generalization
of the one-dimensional trapezoidal rule uses an average of the value of f(x, y)
at these vertices, as follows:∫

T

f(x, y)dxdy ≈ 1

3
Area(T)(f(M) + f(N) + f(P)). (6.24)

Moreover, the one-dimensional midpoint rule can be generalized using the
center of gravity of the triangle T :∫

T

f(x, y)dxdy ≈ Area(T)f(G). (6.25)

Both formulae (6.24) and (6.25) are exact for polynomials of the form ax +
by + c.

Remark 6.2 Note that to obtain more accurate approximations, a higher or-
der formula that uses simultaneously the center of gravity and the vertices of
T , can be used too. Specifically:∫

T

f(x, y)dxdy ≈ 1

12
Area(T)(f(M) + f(N) + f(P) + 9f(G)). (6.26)

is exact for polynomials of the form axy + bx+ cy + d. Note that:

(6.26) =
1

4
(6.24) +

3

4
(6.25).

In Exercise 10, one proves that the formula:∫
T

f(x, y)dxdy ≈ 1

6
Area(T)(f(m) + f(n) + f(p)), (6.27)

is exact for quadratic polynomials, i.e., polynomials of the form: ax2y2 +bx2 +
cy2 + dx + ey + f , where m, n and p are respectively midpoints of the sides
NP , PM and MN . Consequently, (6.27) is more accurate than (6.26).

In case the domain Ω is not polygonal, then its boundary is approached
by a polygonal one: Ωp, such that the area of Ω ∩ Ωp is small, so that:∫

Ω

f(x, y)dxdy ≈
∫

Ωp

f(x, y)dxdy.

Consequently, Ωp is meshed using triangles, followed by applying (6.24) or
(6.25) to approximate

∫
Ωp
f(x, y)dy.

© 2014 by Taylor & Francis Group, LLC

226 Introduction to Numerical Analysis and Scientific Computing

6.3 Monte Carlo Simulations for Numerical Quadrature

In this section, we explore non-deterministic procedures for estimating
definite integrals using random numbers generation.

6.3.1 On Random Number Generation

A sequence of numbersR={x1, x2, ..., xn} where xi ∈ (0, 1) ∀ i is said to be
random if no correlation exists between successive numbers of this sequence.
The elements {xi} are distributed throughout the interval (0, 1), with no pat-
tern or rule linking the values of these elements. For example, if the numbers
are monotonically increasing, they are not random; also if each xi = f(xi−1)
where f is a simple continuous function, then the numbers are not randomly
distributed. The integer n, which is the total number of elements in this se-
quence, is also called the number of trials.
In practice, the random sequence Rn is obtained using special random-
number generators software procedures such as MATLAB, rand function,
based on mathematical methods that can be extensively found in the litera-
ture, such as in [6], [17] and [24]. These procedures produce arrays of uniformly
distributed “pseudo-random” numbers in the unit interval (0, 1) with each call
of the random generation function (for example rand in MATLAB). More pre-
cisely such functions generate:

1. A sequence of numbers that is uniformly distributed in the interval
(0, 1), i.e., with no subset of (0, 1) containing a share (of numbers) that is
proportional to its size. For example, the probability that an element x
of the sequence falls in the subinterval [a, a+h] is h, and is independent
from the number a. Similarly, if pi = (xi, yi) are uniformly distributed
random points in some rectangle in the plane, then the number of these
points that fall inside a square of area k should depend only on k and
not on the location of the square inside the rectangle.

2. Moreover, the numbers produced by a computer code are not com-
pletely random since a “deterministic” mathematical algorithm is used
to select these numbers. However, for practical purposes, these num-
bers are “sufficiently random” and for that reason, we refer to these as
pseudo- random numbers.

Procedures to generate a sequence Rn = {x1, x2, ..., xn} of pseudo-random
numbers are usually based on an initial integer I0 called the seed of the
sequence. It is a number that controls whether the procedure repeats the
same particular sequence after n reaches N , i.e.,

xN+i = xi, i = 1, 2, ..., N − 1,

© 2014 by Taylor & Francis Group, LLC

Advanced Numerical Integration 227

as theoretically, for a fixed value of the seed I0, the random number generator
can produce hundreds of thousands of pseudo random numbers before repeat-
ing itself. One example, [9], of an algorithm that generates a sequence of n
pseudo-random numbers in single precision that are uniformly distributed in
the interval (0, 1) is as follows. Choose l0 to be any integer between 1 and the
Mersenne prime number M = 231 − 1 = 2147483647. A MATLAB implementa-
tion of a pseudo-random numbers generator is as follows.

Algorithm 6.4 Pseudo-Random Generator

function x=myrand(n)

%Input: n is the length of the sequence

% Output: array of n random numbers [x_1, x_2,...,x_n], x_i in (0, 1)

% I0 is the seed of the sequence

% 1<=l0, integer <= M = 2^31 - 1 = 2147483647 (Mersenne prime number).

M=2^31-1;I0=M;%for example I0=M

x=ones(n,1);

y=I0;

for i = 1 : n

y=rem(7^5*y,M);

x(i) = y / M ;

end

Note that all the computed x(i)’s are numbers such that: 0 < x(i) < 1.

6.3.2 Estimation of Integrals through Areas and Volumes

Consider the integral I =
∫ b
a
f(x)dx, which we identify with the area A,

located in a two-dimensional cartesian plane between:

x = a, x = b, y = 0 and y = f(x).

Define now:

m = min
a≤x≤b

f(x) and M = max
a≤x≤b

f(x).

Then one has:

m(b− a) ≤ A ≤M(b− a) (6.28)

We assume now the existence of a procedure that generates at random any
number N of ordered pairs {(xi, yi)|i = 1, ..., N}, where:

∀i : a ≤ xi ≤ b, and m ≤ yi ≤M.

Of that N “throws,” let us count n, as the number of hits, i.e., n is set initially
to 0 and at each “throw,” if:

yi × f(xi) ≥ 0 and |yi| ∈ [0, |f(xi)|],

© 2014 by Taylor & Francis Group, LLC

228 Introduction to Numerical Analysis and Scientific Computing

then n is incremented by 1. As a result and according to the law of large
numbers:

(M −m)× (b− a) lim
N→∞

n

N
= A.

Generation of random numbers is a rather difficult task. MATLAB rand func-
tion does generate “pseudo-random” numbers in the interval (0,1). The se-
quence generated through calling such functions is not perfectly random, but
is reasonable for use in estimating integrals through Monte Carlo simulations.
The following simple MATLAB procedure implements this type of method.

Algorithm 6.5 A Monte Carlo Simulation by “Hits”

function I=MonteCarlo1D(a,b,m,M,N)

%Input: The interval of integration (a,b)

% The number of throws N

% m and M, where m<=f(x)<=M

%Output: The Monte Carlo approximation I

n=0;% Initialize the number of hits

A=(M-m)*(b-a);%Area of rectangle in which area under f(x) lies

for i=1:N

x=a+(b-a)*rand(1);

y=m+(M-m)*rand(1);

z=f(x);

if y*z>=0

if abs(y)<=abs(z)

n=n+1;

end

end

end

I=A*n/N;

We give 2 examples resulting from this implementation.

Example 6.3 The first deals with the integral I =
∫ 2

−1
f(x)dx, with f(x) =

3(x− 1)2 + 2(x− 1), which exact value is I = 6.

Two consecutive runs have been conducted, the first with 1,000 throws and
the second with 10,000, obtaining respectively 238 and 2486 hits, leading to
approximating I by respectively 5.95 and 6.215. These are illustrated in Figure
6.8.

Example 6.4 The second considers the integral I =
∫ 1

0
f(x)dx = π, with

f(x) = 4
√

1− x2.

Experiments were conducted for 100, 1,000, 5,000 and 10,000 throws. Figure
6.9 displays the results for the first 2 cases. Table 6.4 gives the results of these
tests, while the graphs in Figure 6.9 illustrate the experiments for N = 1000
and 10,000. Thus, there is no indication that an increase in the number of

© 2014 by Taylor & Francis Group, LLC

Advanced Numerical Integration 229

FIGURE 6.8: Application of Monte Carlo to I =
∫ 2

−1
3(x− 1)2 + 2(x− 1)dx

N n In |I− In|/I
100 81 3.24 3.132403× 10−2

1000 782 3.128 4.326676× 10−2

5000 782 3.124 5.6000× 10−3

10000 7, 867 3.1468 1.657550× 10−3

TABLE 6.4: Application of Monte Carlo method to I =
∫ 1

0
4
√

1− x2dx

FIGURE 6.9: Application of Monte Carlo method to I =
∫ 1

0
4
√

1− x2dx

© 2014 by Taylor & Francis Group, LLC

230 Introduction to Numerical Analysis and Scientific Computing

throws would allow a better approximation to π. With 15,000 throws, we reach
only 3.1325 as approximation to π. This is caused by two factors:

• The pseudo-randomness of the numbers being generated, and

• The slowness of the convergence of a Monte Carlo simulation.

This implies that when opting to use this type of stochastic approximation,
one must insure “almost perfect” randomness and at the same time expect
long computation times.

6.3.3 Estimating Mean Values

One consequence of (6.28) is the mean value theorem that allows one to
write:

For a simple integral:

I =

∫ b

a

f(x)dx = (b− a)f(c), c ∈ (a, b). (6.29)

For a double and triple integral:

I =

∫
Ω

f(x, y)dxdy = |Ω|f(c), c ∈ Ω, (6.30)

I =

∫
Ω

f(x, y, z)dxdydz = |Ω|f(c), c ∈ Ω, (6.31)

with |Ω| being respectively the area and volume of the 2 (respectively 3)
dimensions domain: Ω.
In either of these cases and regardless of the dimension of the domain Ω, the
mean-value formula reduces the finding of I to:

1. Finding |Ω| (|Ω| = (b− a) in 1 dimension).

2. Estimating f(c), with c being undetermined.

In case |Ω| is not known, then two tasks need to be carried out simultaneously.
Noting first that:

• Ω = (a, b) in 1 dimension.

• In 2 dimensions, there exists {(ai, bi)|i = 1, 2} such that Ω ⊂ (a1, b1)×
(a2, b2).

• In 3 dimensions, there exists {(ai, bi)|i = 1, 3} such that Ω ⊂ (a1, b1)×
(a2, b2)× (a3, b3).

Then, through a stochastic process of a Monte Carlo simulation, one generates
a sequence of n hits out of N throws respectively on:

© 2014 by Taylor & Francis Group, LLC

Advanced Numerical Integration 231

• (a, b) in 1 dimension. In such case n = N with |Ω|c| = |Ω| = b− a

• (a1, b1)× (a2, b2), in 2 dimensions, leading to:

|Ω|c = (b1 − a1)(b2 − a2)
n

N
.

• And (a1, b1)× (a2, b2)× (a3, b3), in 3 dimensions, giving:

|Ω|c = (b1 − a1)(b2 − a2)(b3 − a3)
n

N
.

The procedure that determines |Ω|c ≈ |Ω|, saves simultaneously the sequence:

{P1, P2, ..., Pn},

of the random points generated from these n hits. Consequently, the undeter-
mined mean value f(c) in (6.29), (6.30), (6.31) is estimated by the random
sum:

f(c) ≈ 1

n
(f(P1) + f(P2) + ...+ f(Pn)), (6.32)

which allows a final estimate of:

I ≈ |Ω|c
n

(f(P1) + f(P2) + ...+ f(Pn)).

A possible measure of the error in approximating f(c) by

1

n
(f(P1) + f(P2) + ...+ f(Pn)),

is given by the variance σ2 of f , where

σ2 = f2 − (f)2; with f =
1

n

n∑
i=1

f(Pi) and f2 =
1

n

n∑
i=1

f(Pi)
2

It is proved in [30] that the error incurred is of order O(1/
√
n).

We give examples of integrals over domains Ω, with a known value of |Ω|, start-
ing with a one-dimensional case on the computation of π computed previously
using areas Monte Carlo simulation.

Example 6.5 Compute I = 4
∫ 1

0

√
1− x2dx using mean-value Monte Carlo

simulations.

The results are given in Table 6.5. As in Example 6.4, one reaches the same
conclusions regarding the slowness of the method and its dependence on “per-
fect” random generation.
We consider now two-dimensional examples, the first being an integral of an
integral over a square.

Example 6.6 Let V =
∫ 5/4

0

∫ 5/4

0
(4− x2 − y2) dydx.

The analytical value of V can be found. Its exact value is V = 4.622395833.
Using the Monte Carlo simulation with successively n = 102, 103, 104, the
results are provided in Table 6.6.

© 2014 by Taylor & Francis Group, LLC

232 Introduction to Numerical Analysis and Scientific Computing

n In |I− In|/I
100 3.245724 3.314608× 10−2

500 3.094700 1.492644× 10−2

1000 3.142022 1.367608× 10−4

2000 3.167981 8.39975× 10−3

5000 3.122143 6.190950× 10−3

10000 3.138454 9.990669× 10−4

TABLE 6.5: Results of Monte Carlo mean-value simulations to I =
4
∫ 1

0

√
1− x2dx

n Vn ε = |V −Vn|
100 4.578791308 0.0436045
1000 4.581294418 0.0411014
10000 4.622980842 0.0005850

TABLE 6.6: Results for Monte Carlo approximations to V =
∫ 5/4

0

∫ 5/4

0
(4−

x2 − y2) dydx

6.4 Exercises

1. Derive estimate (6.3) for non-uniform meshes in the composite midpoint
rule.

2. Derive estimate (6.4) for non-uniform meshes in the composite Simpson’s
rule.

3. Derive the identity (6.6) which estimates the O(h4) term in the compos-
ite Simpson’s rule.

4. Derive the identity (6.19) that provides the error term in the composite
double integration midpoint rule on rectangular domains.

5. Derive the identity (6.18) that explicits the error term in the composite
double integration trapezoidal rule on rectangular domains.

6. With m = n = 4, approximate the following double integrals using the
composite double trapezoid, and Simpson’s rules.

(a)
∫ 2

1.4

∫ 1.5

1
ln(2xy) dy dx

(b)
∫ 2.2

2

∫ 2.6

2
(x2 + y3) dy dx

7. With m = n = 4, approximate the following double integrals using the
midpoint rule.

© 2014 by Taylor & Francis Group, LLC

Advanced Numerical Integration 233

(a)
∫ 4

2

∫ 2

1
ln(2xy) dy dx

(b)
∫ 3

2

∫ 4

2
(x2 + y3) dy dx

8. With m = n = 2, approximate the following double integrals using
successively the composite double midpoint and Simpson’s rules.

(a)
∫ 1

0

∫ 1

0
ey−x dy dx

(b)
∫ π

0

∫ π
0

cos x dy dx

9. With m = n = 2, approximate the following double integrals using
successively the composite trapezoid rule.

(a)
∫ 1

0

∫ 1

0
ey−x dy dx

(b)
∫ π

0

∫ π
0

cos x dy dx

10. In reference to (6.27), let M, N, P be the vertices of a triangle T and
m, n, p, respectively the midpoints of the sides of T : MN, NP, PM .
Find the coefficients a, b, c, a1, a2, a3 such that the approximation for-
mula:

a1f(M) + a2f(N) + a3f(P) + b1f(m) + b2f(n) + b3f(p)

to
∫
T
f(x, y)dxdy is exact for f(x) = p(x), p(x) a polynomial of degree

2, i.e., p(x) = 1, x, y, x2, y2, xy.

11. With m = n = p = 2, approximate the following triple integrals using
successively the composite triple midpoint and trapezoid rules.

(a)
∫ 1

−1

∫ 2

1

∫ 1

0
y dz dy dx

(b)
∫ 1

−1

∫ 1

0

∫ 2

1
xyz1dz dx dy

© 2014 by Taylor & Francis Group, LLC

234 Introduction to Numerical Analysis and Scientific Computing

6.5 Computer Exercises

1. Test MATLAB quad against this chapter function RecurAdaptSimp (Refer
to Algorithm 6.1) for the following known integrals:

•
∫ 100

0
(x2 − 1)e−xdx, with absolute tolerance 0.5× 10−7.

•
∫ 100

0
(x3 − x)e−2xdx, with absolute tolerance 0.5× 10−10.

2. Write a MATLAB program that generates the results in Table 6.3 for
f(x, y) = x4y4, then test your program for the following double inte-
grals:

•
∫ 2

0

∫ 1

0
(x2 + y2)ex+ydxdy.

•
∫ 2

0

∫ 1

0
(x+ y)(sin2(x) + sin2(y)dxdy.

3. Consider the polygonal domain Ω shown in Figure 6.4. Test Algorithms
6.2 and 6.3 to approximate: ∫

Ω

ex+ydxdy,

on the meshes shown in Figures 6.5, 6.6 and 6.7.

4. Use Algorithm 6.5 to compute approximations In of I =
∫ b
a
f(x) dx and

as well |I−In||I| , for n = 2p, p = 4, 5, 6, 7, 8, 9, 10, in the following cases:

(a) f(x) =
√
x, a = 0, b = 5.

(b) f(x) =
√
x+
√
x, a = 0, b = 8.

5. Extend Algorithm 6.5 to double integrals and apply it to find approx-

imations In to I =
∫ 5/4

0

∫ 5/4

0
(
√

4− x2 − y2) dydx and simultaneously
|I−In|
|I| for n = 10p, p = 3, 4, 5, 6, using the exact value I = 2.66905414.

6. Write a MATLAB program to approximate
∫ ∫

Ω
f(x, y) dxdy using a Monte

Carlo method based on (6.30) that uses the approximation (6.32) in the
following cases:

(a) f(x, y) = sin(x) cos(y), Ω = {(x, y) : (x− 1)2 + (y − 1)2 ≤ 1
4}.

(b) f(x, y) = ex+y, Ω the polygonal domain shown in Figure 6.4.

© 2014 by Taylor & Francis Group, LLC

Chapter 7

Numerical Solutions of Ordinary
Differential Equations (ODEs)

7.1 Introduction . 235
7.2 Analytic Solutions to ODEs . 238
7.3 Mathematical Settings for Numerical Solutions to ODEs 242
7.4 Explicit Runge-Kutta Schemes . 247

7.4.1 Euler Explicit Method . 247
7.4.2 Second-Order Explicit Runge-Kutta Methods . 249
7.4.3 General Explicit Runge-Kutta Methods . 253
7.4.4 Control of the Time-Step Size . 259

7.5 Adams Multistep Methods . 264
7.5.1 Adams Schemes of Order 1 . 265
7.5.2 Adams Schemes of Order 2 . 265
7.5.3 Adams Schemes of Order 3 . 266
7.5.4 Adams Methods of Order 4 . 267

7.6 Multistep Backward Difference Formulae . 267
7.7 Approximation of a Two-Points Boundary Value Problem 270
7.8 Exercises . 273
7.9 Computer Exercises . 275

7.1 Introduction

Differential equations involve the dependence of some variable y(t) with
respect to an independent time variable t. They are often used to model phys-
ical problems in engineering economics and natural and social sciences. There
is a large number of references on the topics of analysis of ordinary differential
equations and as well on numerical solutions to approximate solutions of dif-
ferential equations. For that purpose, we cite [2], [5], [11], [18], [22], [21] [25],
[28] and [30]. Note also that all standard textbooks on Scientific Computing
include at least one chapter on Numerical Ordinary Differential Equations
([4], [7], [9], [29], [26] etc.).
We start this chapter by giving some specific ODEs models, with each describ-
ing a phenomenon for which one seeks a solution y(t) over the time interval
[0, T].

Example 7.1 The first one is that of a linear first-order ordinary differen-
tial equation that models a diffusive process of decay, for example that of a
radioactive rate or that of a temperature with time.

235

© 2014 by Taylor & Francis Group, LLC

236 Introduction to Numerical Analysis and Scientific Computing

The modeling function y(t) satisfies:

y
′
(t) +Ky(t) = s(t), 0 < t ≤ T, y(0) = a. (7.1)

where K is the rate of decay and s(t) the “source” function of radioactivity
or of heat.
Other well known models find their origin in dynamics and are based on the
classical laws of motion. Examples are as follows:

Example 7.2 The first-order rocket equation, where one seeks its velocity
y(t) that verifies:

M(t)y
′

= K − F (y)y, 0 < t ≤ T, y(0) = 0, (7.2)

where K is the resulting rocket propulsive force, M(t) is its time varying
mass and F (y)y, a resistance force caused by friction with F (y)y “smoothly”

increasing with y, for example F (y) = y1/2

ln(2+y) .

Example 7.3 The first-order population logistics equation:

y
′

= a(1− y

b
)y, 0 < t, y(0) = y0, (7.3)

Example 7.4 The second-order equation of the pendulum where y(t) is its
position verifies the following:

y
′′
(t) +A sin(y(t)) = v(t), 0 < t ≤ T, y(0) = a, y

′
(0) = b, (7.4)

where A is a constant depending on the pendulum physical characteristics and
v(t) an external force depending on the time t; a and b are respectively the
initial position and velocity of the pendulum.

Example 7.5 The second-order Van der Pol equation associated with an
oscillator subject to a non-linear damping force satisfies:

y
′′
− µ(1− y2)y

′
+ y = 0, 0 < t ≤ T, y(0) = a, y

′
(0) = b, (7.5)

where y(t) is the oscillator’s position and µ a positive constant.

Although the pendulum and Van der Pol equations (7.4) and (7.5) are of the
second-order, both can be reduced to a first-order system of two first-order
differential equations. This can be done by introducing the variables:{

y1(t) = y

y2(t) = y
′

One verifies in the case of (7.4), for example, that y1 and y2 satisfy: y
′

1 = y2

y
′

2 = −A sin(y1(t)) + s(t), 0 < t ≤ T.
y1(0) = a, y2(0) = b.

(7.6)

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 237

By introducing vector notations, specifically:

Y (t) =

(
y1(t)
y2(t)

)
and

f(t, Y (t)) =

(
y2

−A sin(y1(t)) + s(t)

)
,

then the pendulum problem can be written as follows:

Y
′
(t) = f(t, Y (t)), with 0 < t ≤ T, Y (0) = Y0 (7.7)

given that:

Y0 =

(
a
b

)
.

More generally, an n-order initial value ordinary differential equation with
n ≥ 1 and written as:

y(n)(t) = g(t, y, y
′
, ..., y(n−1)), with t0 < t ≤ T, y(k)(t0) given ∀ 0 ≤ k ≤ n− 1

is amenable to a system of n first-order differential equations of the
form (7.7) with an n-dimensional initial value vector Y (t0) = Y0 and
f : [t0, T]× Rn → Rn.
Although the computational methods considered in this chapter are applicable
to (7.7), we will restrict our presentation to the general initial-value problem
of a first-order scalar ordinary differential equation:

(IV P)

{
y′(t) = f(t, y(t)), t ∈ [t0, T]
y(t0) = y0 given.

where y0 ∈ R and the function f(., .) : [t0, T] × R → R is at least continuous
over its domain. The interval [t0, T] (that could be finite or infinite) is also
called the existence interval of the solution.
In the remaining part of this chapter, we start in Section 7.2 by presenting
specific ODEs systems, for which analytical solutions can be found and inter-
vals of existence are clearly specified. In the sequel, we give a general theorem
on existence and uniqueness of solutions to ODEs. Then in Section 7.3 we
provide the reader with general mathematical settings in which numerical
methods for solving ODEs can be defined. Section 7.4 is dedicated to explicit
Runge-Kutta methods while Section 7.5 presents Adams-Bashforth explicit
and Adams-Moulton implicit methods. Section 7.6 gives a brief discussion
on Multi-step Backward Difference Formulae while the last section handles a
two-point boundary value problem using a finite-difference discretization.

© 2014 by Taylor & Francis Group, LLC

238 Introduction to Numerical Analysis and Scientific Computing

7.2 Analytic Solutions to ODEs

Analytical Solutions In all of the above examples, only equation (7.1) leads
to an expression of y(t) in terms of t and the problem parameters. Specifically,
one has:

y(t) = y(0)e−Kt +

∫ t

0

e−K(t−s)v(s)ds.

In case the integral
∫ t

0
e−K(t−s)v(s)ds can be formally found, then y(t) can be

obtained from this formula for all t ∈ [0, T]. Otherwise we can resort, using
the techniques of the previous chapter, to a numerical computation of such
integral.
Consider now the following simple initial value problem for which an analytic
solution can be easily found:

Example 7.6 Let
y
′

= ayp, a > 0, y(0) = 1, (7.8)

Using the method of separation of variables, the solution of this initial value
problem satisfies the formulae:

y(t) =

{
(1 + a(1− p)t)

1
1−p , p 6= 1,

eat, p = 1.
(7.9)

The existence and properties of the solution depend on the values of the pa-
rameters a and p. The following results can be easily derived through standard
separation of variables techniques to obtain analytic solutions. Specifically:

1. Case 1: a > 0
If p > 1: the existence interval is finite with [t0, T) = [0, 1

a(p−1)) and

y(t)→∞ as t increases. Note that the growth to ∞ of the solution can
be fast (highly “steep”)
If p ≤ 1: the existence interval is infinite with [t0, T) = [0,∞). As above
y(t) → ∞ as t increases, but the growth to ∞ of the solution is rather
slow.
Figure 7.1 illustrates these results for a = 1.

2. Case 2: a < 0
If p < 1: the existence interval is [0, 1

a(p−1)), and the decay to 0 as t

increases can be fast (highly “steep”)
If p ≥ 1: the existence interval is [0,∞), and the decay to 0 as t increases
is rather slow.
For a = −1, these results are illustrated in Figure 7.2.

Existence Results
In general, analytical or formal solutions cannot be computed for (IV P).

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 239

FIGURE 7.1: Graph of the solution to y
′

= ayp, a > 0, y(0) = 1, a = 1

FIGURE 7.2: Graph of the solution to y
′

= ayp, a > 0, y(0) = 1, a = −1

© 2014 by Taylor & Francis Group, LLC

240 Introduction to Numerical Analysis and Scientific Computing

However, some results on existence and behavior of the solutions can be stated.
For that purpose the initial value problem (IV P) is first written equivalently
as an integral equation:

y(t) = y(t0) +

∫ t

t0

f(s, y(s))ds. (7.10)

Such a problem could be handled through the study of an operator-function:

T : v(t)→ z(t),

given by:

z(t) = T (v(t)) = y(t0) +

∫ t

t0

f(s, v(s))ds, (7.11)

and by proving that T has a unique solution that solves the (IV P) problem.
This is usually obtained by imposing assumptions on the function f . Specifi-
cally, let z1(t) = T (v1(t)) and z2(t) = T (v2(t)), for 2 distinct functions v1 and
v2. One writes then:

z1(t)− z2(t) =

∫ t

t0

(f(s, v1(s))− f(s, v2(s)))ds,

and introduces the following definition:

Definition 7.1 A function f(t, v) : D ⊂ R2 → R satisfies a Lipschitz con-
dition in the variable v on the set D, if there exists a positive constant L0,
with:

(L0) |f(t, v1)− f(t, v2)| ≤ L0|v1 − v2|,
for all (t, v1) and (t, v2) ∈ D. The constant L0 is called a Lipschitz constant
for f on D.

Example 7.7 Let f(t, y) = t2|y|. Show that f(., .) satisfies a Lipschitz con-
dition on the set D = {(t, y) | 1 ≤ t ≤ 5;−3 ≤ y ≤ 4}.

Let (t, v1) and (t, v2) ∈ D , then

|f(t, v1)− f(t, v2)| = t2||v1| − |v2|| ≤ 55|v1 − v2|

Obviously, the Lipschitz constant is here, L0 = 25.

Based on the Lipschitz condition (L0), a general result of existence and unique-
ness of the solution to (IV P) can be proved ([2]), by showing the operator T
is “contracting” in the sense that:

|z1(t)− z2(t)| = |T (v1)(t)− T (v2)(t)| ≤ γ max
0≤s≤(t−t))

|v1(s)− v2(s)|.

where γ < 1 and L0(t − t0) = γ < 1. As γ and L0 are independent from y0,
then one obtains:

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 241

Theorem 7.1 Let D = [t0, T] × R. If f(t, y) is continuous and satisfies a
Lipschitz condition (L0) in the variable y on D, then the initial value problem:

(IV P) y′(t) = f(t, y(t)), t ∈ [t0, T], y(t0) = y0

has a unique solution y(t), ∀t ∈ [t0, T].

Remark 7.1 Note in case the set D is given by D = [t0, T] × I0, where
I0 ⊂ R contains the initial condition y0, then L0 depends on y0 and the
existence interval (t0, t1) of Theorem 7.1 depends on y0.

Thus, by induction, one reaches a sequence of existence intervals, [t0, t1],
[t1, t2],... that yields the final interval for the solution [t0, Tf], Tf ≤ ∞.

Remark 7.2 Note that the solution to (IV P) can be computed using an it-
erative scheme called Picard’s iteration applied on (7.11), where a sequence
of functions {y(k)} defined over the interval [t0, T] is generated, following the
iterative process:{

y(0)(t) = y0, ∀t ∈ [t0, T]

y(k)(t) = y0 +
∫ t
t0
f(s, y(k−1)(s))ds, k ≥ 1, ∀t ∈ [t0, T].

(7.12)

(7.12) is a Predictor-Corrector type process leading to a sequence {y(k)}
that converges to y(t) on [t0, T].

Example 7.8 Consider the following initial value problem:

y′(t) = −y + t+ 1, 0 ≤ t ≤ 1, y(0) = 1

Use Picard’s method to generate y(i)(t) for 0 ≤ i ≤ 3

Using the iterative process (7.12), the following functions are obtained:

1. y(0)(t) = 1, ∀t ∈ [0, 1]

2. y(1)(t) = 1 +
∫ t

0
sds = 1 + t2

2 , ∀t ∈ [0, 1]

3. y(2)(t) = 1 +
∫ t

0
(−1− s2

2 + s+ 1)ds = 1 + t2

2 −
t3

6 , ∀t ∈ [0, 1]

4. y(3)(t) = 1 + t2

2 −
t3

6 + t4

24 , ∀t ∈ [0, 1]

Note that the actual solution to this problem is y(t) = t+ e−t, while the first
few terms of the Picard iteration correspond to the Mac Laurin series of y(t),
i.e.,

1 +
t2

2
− t3

6
+
t4

24
− t5

120
+ ...,

with for 0 < t ≤ T ,

|y(t)− y(k)(t)| ≤ tk+2

(k + 2)!
≤ T k+2

(k + 2)!
,

© 2014 by Taylor & Francis Group, LLC

242 Introduction to Numerical Analysis and Scientific Computing

indicating the rapid convergence of the Picard iteration to the solution y(t). In
particular, if one is working on an interval (t0, t0 + h), then Picard’s iteration
gives:

|y(1)(t)−y(t)| = |
∫ t

t0

(f(s, y(0)(s))− f(s, y(s)))ds| ≤ Lt max
t0≤s≤t0+h

|y(0)(s)−y(s)|,

∀t ∈ (t0, t0 + h) and therefore:

|y(2)(t)−y(t)| = |
∫ t

t0

(f(s, y(1)(s))− f(s, y(s)))ds| ≤ L2 max
t0≤s≤t0+h

|y(0)(s)−y(s)|
∫ t

t0

sds,

i.e.,

|y(2)(t)− y(t)| ≤ (Lh)2

2
max

t0≤s≤t0+h
|y(0)(s)− y(s)|.

More generally, one has by induction:

|y(k)(t)− y(t)| ≤ (Lh)k

k!
max

t0≤s≤t0+h
|y(0)(s)− y(s)|. (7.13)

This indicates that Picard’s iteration oder’s of convergence is O(h
k

k!).

Remark 7.3 Solutions to some ordinary differential equations may also ex-
hibit an oscillatory behavior over long time intervals. Such is the case for
example of the second-order ODEs (7.4) and (7.5) that are respectively the
pendulum and Van der Pol equations.

7.3 Mathematical Settings for Numerical Solutions to
ODEs

We consider now some computational aspects related to the initial value
problem

(IV P)

{
y′(t) = f(t, y(t)), t ∈ [t0, T]
y(0) = y0

Numerical methods are devised to produce discrete solutions that are ap-
proximations to the exact solution y(t) of (IV P) on a set of discrete points.
Specifically, a discrete solution is usually a solution of a difference equation
on a discrete set of time values {ti|i = 0, 1, ..., N}, that partition the interval
[t0, T] such that:

t0 < t1 < ... < tN−1 < tN = T,

and that are usually equally spaced, i.e.,

ti = t0 + ih, ∀i = 1, ..., N

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 243

with tN = T = t0 +Nh and h = ti+1 − ti = T−t0
N being the time step.

The interval [t0, T] is thus subdivided into N subintervals

{[ti, ti+1] |i = 0, 1, ..., N − 1}.

of equal lengths. However, there are (IV P) problems for which a uniform
partition of [t0, T] is not convenient. In such case “adaptive” methods are
designed that adapt the discrete time distribution according to the behavior
of the solution. This topic is analyzed in later sections of this chapter.
In all cases, one seeks a discrete solution in the form of a finite sequence:

YN = {y0, y1, ..., yN}

that approximates the set of exact values of the solution y(t):

YN = {y(0), y(t1),, y(tN)}.

The elements of YN are such that:

y0 = y(0) and yi ≈ y(ti), 0 < i ≤ N

Moreover, the sequence YN = {yi}Ni=0 satisfies a difference equation, which
fits one of the following categories:

1. One-step explicit difference equation for i ≥ 1, obtained from
expressions of the form:

yi = FE(ti, ti−1, yi−1)⇔ yi − yi−1

h
= GE(ti, ti−1, yi−1). (7.14)

requiring 1 initial value: y0 = y(0).

2. One-step implicit difference equation where for i ≥ 1:

yi = F I(ti, ti−1, yi, yi−1)⇔ yi − yi−1

h
= GI(ti, ti−1, yi, yi−1), (7.15)

requiring 1 initial value: y0 = y(0). Unlike (7.14), this last equation is
generally nonlinear, requiring use of roots finding methods as described
in Chapter 2 or a Picard iteration that would start with one application
of an explicit scheme (7.14). Implicit methods may in some cases pro-
vide better discrete solutions than explicit methods, but require more
computational effort at each step.

3. k-Multi-steps explicit difference equation for k > 1 and i ≥ k,
where:
yi = FE,k(ti, ..., ti−k, yi−1, ..., yi−k)⇔

yi − yi−1

h
= GE,k(ti, ..., ti−k, yi−1, ..., yi−k), (7.16)

requiring k initial values: y0 = y(t0) and y1, ..., yk−1, usually obtained
using one-step methods.

© 2014 by Taylor & Francis Group, LLC

244 Introduction to Numerical Analysis and Scientific Computing

4. k-Multi-steps implicit difference equation , for k > 1 and i ≥ k,
where:
yi = F I,k(ti, ..., ti−k, yi, ..., yi−k)⇔

yi − yi−1

h
= GI,k(ti, ..., ti−k, yi, ..., yi−k) (7.17)

which also require k initial values in addition to solving at each time
step some nonlinear equation.

Remark 7.4 Combined use of explicit and implicit difference equations lead
to a Picard’s iteration predictor-corrector process, as indicated in Re-
mark 7.2 with a rapid convergence as expressed by the estimate (7.13).

For example in considering the one-steps methods (7.14) and (7.15), the ex-
plicit scheme gives a prediction yPi :

yPi = FE(ti, ti−1, yi−1),

and yPi is in turn corrected once through:

yCi = F I(ti, ti−1, y
P
i , yi−1),

leading to the final suggested approximation yi = yCi . Note that several cor-
rections can be applied to improve the first approximation yPi .
For the purpose of analyzing convergence of a numerical method solving
(IV P), we start by introducing the error vector:

E = {e0, e1, ..., en},

where ei = y(ti) − yi, i = 0, 1, ..., n with e0 = 0. We may now define conver-
gence of the discrete scheme as follows.

Definition 7.2 A numerical method of the form (7.14), (7.15), (7.16) or
(7.17), solving (IV P) is convergent on [t0, T], if:

lim
h→0

max
1≤i≤N

|ei| = 0.

Furthermore, the convergence of the numerical method is of order p, if
max1≤i≤N |ei| = O(hp).

Convergence and order of convergence results are usually determined
from the analysis of the local truncation error of a method. Specifically:

Definition 7.3 For all i = 1, 2, ..., N , the local truncation error of the
difference equations (7.14), (7.15), (7.16) and (7.17), with respect to the exact
solution y(t) are respectively given by:

Ei = E(y(ti)) =


y(ti)− FE(ti, ti−1, y(ti−1)), i = 1,, N,
y(ti)− F I(ti, ti−1, y(ti), y(ti−1)), i = 1,, N,
y(ti)− FE,k(ti, ..., ti−k, y(ti−1), ..., y(ti−k)), i = k,, N,
y(ti)− F I,k(ti, ..., ti−k, y(ti), y(ti−1), ..., y(ti−k)), i = k,, N.

(7.18)

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 245

Furthermore, the difference method is said to be of order p, if maxi |Ei| =
O(hp+1).

To obtain convergence results for a numerical method, an additional assump-
tion on the difference method being used is needed. In this chapter, we only
illustrate this concept on a one-step explicit method, (7.14). For this
purpose, assume that the function G ≡ GE(ti, ti−1, w) satisfies a Lipschitz
property with respect to w over a domain Dy ⊂ R that includes the range R
of the exact solution y(t), i.e.,

R = {y(t) : t ∈ [t0, T]} ⊂ Dy.

Then, ∀ti, ti−1 ∈ [t0, T], and∀w, z ∈ Dy,

|G(ti, ti−1, w)−G(ti, ti−1, z)| ≤ K|w − z|, (7.19)

where K is a function of y(.) and T , but is independent from i and h. On that
basis, we may prove the following convergence result:

Theorem 7.2 Convergence If the local truncation error of the difference
method (7.14) solving (IV P) is O(hp+1) (p > 0), and the function G(.) satis-
fies the Lipschitz property (7.19), then the sequence YN = {y0, y1, ..., yN} that
solves (7.14) is such that:

max
1≤i≤N

|yi − y(ti)| = max
1≤i≤N

|ei| = O(hp).

Proof. For simplicity and with no loss of generality, we prove this result for
the case t0 = 0. Proceeding by induction and given that:

y(t1)− y(0)

h
= G(t1, 0, y(0)) +

1

h
E1, (7.20)

using then (7.14):
y1 − y0

h
= G(t1, 0, y0). (7.21)

then subtracting (7.20) and (7.21) leads to:

e1 = e0 + h(G(t1, 0, y(0))−G(t1, 0, y0)) + E1.

Since y(0) = y0, then e0 = 0 and one has:

|e1| = |E1| = O(hp+1).

Thus, y1 ≈ y(t1) and y1 ∈ Dy. Taking the procedure one step further, one
has:

e2 = e1 + h(G(t2, t1, y(t1))−G(t2, t1, y1)) + E2.

Hence:
|e2| ≤ |e1|+ h|G(t2, t1, y(t1))−G(t2, t1, y1)|+ |E2|,

© 2014 by Taylor & Francis Group, LLC

246 Introduction to Numerical Analysis and Scientific Computing

and therefore:

|e2| ≤ (1 + hK)|e1|+ |E2| = (1 + hK)|E1|+ |E2|.

This implies that y2 ≈ y(t2), i.e., y2 ∈ Dy, allowing pursuing of the recurrence.
Thus, more generally, one has:

|ei| ≤ (1 + hK)i−1|E1|...+ (1 + hK)|Ei−1|+ |Ei|, i ≥ 1.

Hence:

|ei| ≤ ((1 + hK)i−1 + ...+ (1 + hK) + 1) max
1≤k≤i

|Ek|, i ≥ 1,

i.e.,

|ei| ≤
(1 + hK)i

hK
max

1≤k≤i
|Ek| ≡

(1 + hK)i

K
O(hp).

Let ε0 << 1 be a small number. Then for h ≤ h0 = ε0
K , one has:

|ei| ≤
(1 + ε0)i

K
O(hp),

which indicates simultaneously that yi ≈ y(ti) and |y(ti)− yi| = O(hp). Con-
sequently:

max
1≤i≤N

|yi − y(ti)| ≤
(1 + ε0)N

K
max

1≤k≤N
|Ek|/h ≡ CNhp. (7.22)

with CN = 1
K e

ε0N

Remark 7.5 Note that the error estimate (7.22) depends on a constant CN
that grows exponentially like eε0N . Reducing the effect of such growth implies
using higher order methods in which the term O(hp) would damp large values
taken by CN .

Remark 7.6 It is also important to note that given the estimate:

|ei| ≤ (1 + hk)i−1|E1|...+ (1 + hK)|Ei−1|+ |Ei|, i ≥ 1,

then for “starting values of i,” i = 1, 2, 3, 4, one has |ei| ≤ (1 + hK)4 ×
O(hp+1) ≤ C4h

p+1. Thus, the convergence order at the beginning of the nu-
merical quadrature has the same order as the order of the truncation error.

Theorem 7.3 Stability Let:

ZN = {z0, z1, ..., zN} and WN = {w0, w1, ..., wN},

be two sets of solutions to (7.14), with respective initial conditions z0 and w0.
Then under (7.19) and as h → 0, the numerical scheme (7.14) is stable in
the sense that:

∀i, 1 ≤ i ≤ N, |wi − zi| ≤ cN |w0 − z0|, (7.23)

with cN = eε0N defined in the previous theorem.

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 247

Proof. Given that:

wi − zi = wi−1 − zi−1 + h(G(ti−1, ti, wi−1)−G(ti−1, ti, zi−1)),

one concludes using (7.19), that:

|wi − zi| ≤ (1 +Kh)|wi−1 − zi−1|.

Hence, by induction, one gets:

∀i : 0 ≤ i ≤ N, |wi − zi| ≤ (1 +Kh)i|w0 − z0|,

and therefore:

∀i : 0 ≤ i ≤ N, |wi − zi| ≤ (1 +Kh)N |w0 − z0|.

As in the previous theorem, using similar considerations for the choice of h,
leads to the estimate (7.23).
In what follows we will present the most widely used numerical methods
starting with one-step explicit Runge-Kutta methods up to multi-step Adams
methods.

7.4 Explicit Runge-Kutta Schemes

In numerical integration of ODEs, explicit Runge-Kutta methods (RK
methods) form an important family of explicit one-step methods. These tech-
niques were developed around 1900 by the German mathematicians C. Runge
and M.W. Kutta.
One simple procedure that leads to a relation between y(ti) and y(ti−1) is
based on the numerical integration methods developed in Chapter 5. For that
purpose, we start by transforming the initial value problem (IV P) into a se-
quence of integral equations obtained by integrating y

′
(t) = f(t, y(t)) from

ti−1 to ti, yielding:

y(ti)− y(ti−1) =

∫ ti

ti−1

f(t, y(t))dt, i = 1, ..., N. (7.24)

7.4.1 Euler Explicit Method

The first and simplest formula is the rectangular rule (5.41) that gives for
f ∈ C1[t0, T] and y ∈ C2[t0, T]:∫ ti

ti−1

f(t, y(t)) dt = h f(ti−1, y(ti−1)) +O(h2)

© 2014 by Taylor & Francis Group, LLC

248 Introduction to Numerical Analysis and Scientific Computing

thus yielding for all i, 1 ≤ i ≤ N :

y(ti) = y(ti−1) + hf(ti−1, y(ti−1)) +O(h2) (7.25)

Discretizing this last equation by replacing simultaneously y(tj) by yj , (j =
i−1, i) and dropping the O(h2) truncation term, the classical Euler explicit
scheme is obtained. This scheme consists of finding a discrete sequence YN =
{yi| i = 0, 1, ..., N} such that:{

yi = yi−1 + hf(ti−1, yi−1),⇔ yi−yi−1

h = f(ti−1, yi−1), i = 0, 1,, N − 1,
y0 = y(t0),

(7.26)
Obviously, the local truncation error of O(h2). In the notations of (7.14):

F (ti, ti−1, yi−1) ≡ yi−1 + hf(ti−1, yi−1) and G(ti, ti−1, yi−1) ≡ f(ti−1, yi−1).

Thus, if f(., .) satisfies a Lipschitz condition as in (7.19), Theorems 7.2 and
7.3 are applicable and yield for Euler’s method the following result:

Theorem 7.4 If |f(ti−1, w)−f(ti−1, z)| ≤ K|w−z|, ∀ i = 1, ..., N, and ∀ w, z ∈
Dy ⊂ R, with Dy containing the range of y(t), then for h sufficiently small:

max
1≤i≤N

|yi − y(ti)| ≤ CNh,

with CN as defined in Theorem 7.2.

Thus Euler’s method is of order 1. For practical purposes, we express
(7.26) in the format of a one-stage Runge-Kutta method. Specifically:

(RK1)

{
k1 = f(ti−1, yi−1)
yi = yi−1 + hk1

Computationally, implementing Euler’s method would require one function
evaluation f(., .), at each time step as shown in the following algorithm.

Algorithm 7.1 Euler’s Method

% Input: function f, interval of existence [t0, T], initial

%condition y0, and time step h

% Output: sequence of approximations to the exact solution

% {y1, y2, ..., yn}

function y = Euler(f, 0, T, y0, h)

for i=0:n-1

k1 = f(t(i), y(i)) ;

y(i+1) = y(i) + h*k1 ;

end

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 249

i ti k1 yi y(ti) |yi − y(ti)|
0 0.00 0.0000E+00 1.0000E+00 1.000000E+00 0.0000E+00
1 0.25 1.5625E-02 1.0000E+00 1.000977E+00 9.7704E-04
2 0.50 1.2549E-01 1.0039E+00 1.015748E+00 1.1841E-02
3 0.75 4.3676E-01 1.0353E+00 1.082314E+00 4.7036E-02
4 1.00 1.1445E+00 1.1445E+00 1.284025E+00 1.3956E-01
5 1.25 2.7941E+00 1.4306E+00 1.841079E+00 4.1049E-01
6 1.50 7.1858E+00 2.1291E+00 3.545308E+00 1.4162E+00
7 1.75 2.1039E+01 3.9256E+00 1.043042E+01 6.5049E+00
8 2.00 7.3481E+01 9.1852E+00 5.459815E+01 4.5413E+01

TABLE 7.1: Results of Euler’s method for y′(t) = t3y, t ∈ [0, 2], y(0) = 1

Example 7.9 Use Euler’s explicit scheme to solve the following initial value
problem with time step h = 0.25:{

y′(t) = t3y t ∈ [0, 2]
y(0) = 1

The corresponding discrete scheme with one-stage is given by:

(RK1)

{
k1 = t3i yi
yi+1 = yi + hk1

Since the analytical or exact solution is given by y(t) = e
t4

4 , we can therefore
compute the absolute and relative errors at each ti. These are provided in
the last 2 columns of Table 7.1. Note the deterioration of the absolute error
as ti increases; maxi |yi − y(ti)| = O(h) for ti ≤ 1. This is compatible with
the estimate found in Theorem 7.4, motivating the search for more accurate
methods to approximate the solution for larger times.

7.4.2 Second-Order Explicit Runge-Kutta Methods

Second-order Runge-Kutta methods can be derived by approximating suc-
cessively in (7.24), the integral

∫ ti
ti−1

f(t, y(t))dt by the midpoint then the

trapezoidal rules.
In the sequel, we will be using extensively the following consequence of the
mean value theorem.

Proposition 7.1 If f(., .) : R2 → R is a function of 2 variables and is of
class C1, then:

f(t, z +O(ε)) = f(t, z) +O(ε)

© 2014 by Taylor & Francis Group, LLC

250 Introduction to Numerical Analysis and Scientific Computing

a. Use of the Midpoint Rule
Based on the midpoint rule, (7.24) can be written as:

y(ti) = y(ti−1) + h f(ti−1 +
h

2
, y(ti−1 +

h

2
)) +O(h3) (7.27)

Using Taylor’s expansion on y(t) yields:

y(ti−1+
h

2
) = y(ti−1)+

h

2
y
′
(ti−1)+O(h2) = y(ti−1)+

h

2
f(ti−1, y(ti−1))+O(h2).

Equation (7.27) becomes then:

y(ti) = y(ti−1) + h f(ti−1 +
h

2
, y(ti−1) +

h

2
f(ti−1, y(ti−1)) +O(h2)) +O(h3)

(7.28)
Using Proposition 7.1 yields:

y(ti) = y(ti−1) + hf(ti−1 +
h

2
, y(ti−1) +

h

2
f(ti−1, y(ti−1)) +O(h3) (7.29)

Dropping the O(h3) truncation error term and replacing y(ti) by yi for all i
leads to a second-order explicit method given by:

yi = yi−1 + hf(ti−1 +
h

2
, yi−1 +

h

2
f(ti−1, yi−1)), i = 1, 2, ..., N, (7.30)

or equivalently:

yi − yi−1

h
= f(ti−1 +

h

2
, yi−1 +

h

2
f(ti−1, yi−1)), i = 1, 2, ..., N. (7.31)

Using the notations in (7.14), we note that:

G(ti−1, ti, yi−1) ≡ f(ti−1 +
h

2
, yi−1 +

h

2
f(ti−1, yi−1)).

In that case, if f(., .) satisfies the Lipschitz condition:

|f(t, w)− f(t, z)| ≤ c|w − z|, ∀w, z ∈ Dy,∀t ∈ [0, T],

then for h sufficiently small:

|G(ti−1, ti, w)−G(ti−1, ti, z)| ≤ c|w − z|+ c
h

2
|w − z|,

i.e.,

|G(ti−1, ti, w)−G(ti−1, ti, z)| ≤ K|w − z|, ∀w, z ∈ Dy,∀i = 1, ..., N

Thus, Theorems 7.2 and 7.3 are applicable and yield for this “modified” Euler’s
method the following result:

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 251

Theorem 7.5 Under the assumptions of Theorem 7.4 and for h sufficiently
small, the sequence YN = {y0, y1, ..., yn} obtained from the modified Euler
equation (7.30) satisfies:

max
1≤i≤N

|yi − y(ti)| ≤ CNh2,

with y0 = y(t0) and CN as defined in Theorem 7.2.

Thus the modified Euler’s method is of order 2. For practical pur-
poses, we express (7.30) in the format of a two-stage Runge-Kutta method.
Specifically:

(RK2)


k1 = f(ti−1, yi−1)
k2 = f(ti−1 + h

2 , yi−1 + h
2k1)

yi = yi−1 + hk2

with a local truncation error of O(h3).

Computationally, the implementation of (RK2) requires two function eval-
uations f(., .) at each time step as shown in the following algorithm.

Algorithm 7.2 Modified Euler’s Method

% Input: function f, interval of existence [t0, T], initial

%condition y0, and time step h

% Output: sequence of approximations to the exact solution

% {y1, y2, ..., yn}

function y = ModifiedEuler(f, 0, T, y0, h)

for i=0:n-1

k1 = f(t(i), y(i)) ;

k2 = f(t(i)+h/2, y(i)+h*k1/2) ;

y(i+1) = y(i) + h*k2 ;

end

b. Use of the Trapezoidal Rule Method: Heun’s Method

Another second-order Runge Kutta method of order 2 (referred to as Heun’s
method) is obtained based on the trapezoidal rule applied to (7.24). One then
obtains:

y(ti) = y(ti−1) +
h

2
[f(ti−1, y(ti−1)) + f(ti, y(ti))] +O(h3). (7.32)

Using Taylor’s formula, one has

y(ti) = y(ti−1) + hy
′
(ti−1) +O(h2) = y(ti−1) + h f(ti−1, y(ti−1)) +O(h2),

implying that:

f(ti, y(ti)) = f(ti, y(ti−1) + h f(ti−1, y(ti−1)) +O(h2))

© 2014 by Taylor & Francis Group, LLC

252 Introduction to Numerical Analysis and Scientific Computing

Using Proposition 7.1, equation (7.32) becomes:

y(ti) = y(ti−1)+
h

2
[f(ti−1, y(ti−1))+f(ti, y(ti−1)+hf(ti−1, y(ti−1)))]+O(h3)

(7.33)
Again, by dropping the O(h3) term and replacing y(ti) by yi, for all i, yields
according to the notations in (7.14):

yi = yi−1 +
h

2
[f(ti−1, yi−1) + f(ti, yi−1 + hf(ti−1, yi−1))] ≡ F (ti−1, ti, yi),

(7.34)
or equivalently:

yi − yi−1

h
=

1

2
[f(ti−1, yi−1) + f(ti, yi−1 + hf(ti−1, yi−1))] ≡ G(ti−1, ti, yi−1).

As for the previous second-order Runge-Kutta method, Theorems 7.2 and 7.3
are applicable in case the function f(., .) satisfies a Lipschitz condition, thus
yielding the second-order property of the method. Specifically:

Theorem 7.6 Under the assumptions of Theorem 7.4, then for h sufficiently
small, the sequence YN = {y0, y1, ..., yn} obtained from (7.34) satisfies:

max
1≤i≤N

|yi − y(ti)| ≤ CNh2,

with y0 = y(t0) and CN as defined in Theorem 7.2.

(7.34) can be also expressed in the format of a 2-stage Runge-Kutta method:

(RK2.H)


k1 = f(ti−1, yi−1)
k2 = f(ti, yi−1 + hk1)
yi = yi−1 + h

2 (k1 + k2),
(7.35)

which has a local truncation error of O(h3) and a convergence order of O(h2).
As a straightforward application, we consider now the following example.

Example 7.10 Use the second-order Runge-Kutta method (Heun’s form) to
solve the initial value problem of the preceding example.

The corresponding discrete scheme resulting from (RK2.H) gives:
k1 = t3i yi
k2 = (ti + h)3(yi + hk1)
yi+1 = yi + h

2 [k1 + k2]

The numerical results are presented in Table 7.2. Note that maxi |ei| = 0.135
is compatible with the O(h2) order of the method.

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 253

i ti k1 k2 yi y(ti) |yi − y(ti)|
0 0.00 0.00000E+00 1.56250E-02 1.00000E+00 1.00000E+00 0.00000E+00
1 0.25 1.56555E-02 1.25489E-01 1.00195E+00 1.00098E+00 9.76086E-04
2 0.50 1.27450E-01 4.36863E-01 1.01960E+00 1.01575E+00 3.84845E-03
3 0.75 4.59901E-01 1.14762E+00 1.09014E+00 1.08231E+00 7.82100E-03
4 1.00 1.29108E+00 2.83684E+00 1.29108E+00 1.28403E+00 7.05028E-03
5 1.25 3.52942E+00 7.58782E+00 1.80706E+00 1.84108E+00 3.40139E-02
6 1.50 1.07889E+01 2.43602E+01 3.19672E+00 3.54531E+00 3.48588E-01
7 1.75 4.06796E+01 1.01402E+02 7.59036E+00 1.04304E+01 2.84006E+00
8 2.00 2.02805E+02 5.77518E+02 2.53506E+01 5.45982E+01 2.92475E+01

TABLE 7.2: Results of Heun’s method for y′(t) = t3y, t ∈ [0, 2], y(0) = 1

Remark 7.7 An implicit second-order Runge-Kutta method
Note that if we discretize directly (7.32), we get the implicit second-order
method:

yi = yi−1 +
h

2
[f(ti−1, yi−1) + f(ti, yi)], i = 1, 2, ..., N (7.36)

that can be put in the form (7.15):

yi = F (ti−1, ti, yi−1, yi) ≡ yi−1 +
h

2
[f(ti−1, yi−1) + f(ti, yi)].

Equation (7.36) is non-linear in yi and may be solved through a predictor-
corrector process. Several choices are available:

•

{
y

(P)
i = yi−1

y
(C)
i = yi−1 + h

2 [f(ti−1, yi−1) + f(ti, y
(P)
i)].

•

{
y

(P)
i = yi−1 + hf(ti−1, yi−1), y

(P)
i is obtained using Euler’s method

y
(C)
i = yi−1 + h

2 [f(ti−1, yi−1) + f(ti, y
(P)
i)].

Note also that the second alternative is precisely Heun’s method, therefore
asserting that the predicted estimate is a good choice. As for the first alter-
native, the predicted value being inaccurate, a second correction would be
necessary to reach an acceptable approximation for yi, specifically:

y
(P)
i = yi−1

y
(C),1
i = yi−1 + h

2 [f(ti−1, yi−1) + f(ti, y
(P)
i)]

y
(C),2
i = yi−1 + h

2 [f(ti−1, yi−1) + f(ti, y
(C),1
i)].

7.4.3 General Explicit Runge-Kutta Methods

The three methods introduced above: Euler explicit (RK1), modified Euler
(RK2) and Heun’s (RK2.H) methods belong in fact to the more general

© 2014 by Taylor & Francis Group, LLC

254 Introduction to Numerical Analysis and Scientific Computing

a1 = 0
a2 b21

a3 b31 b32

a4 b41 b42 b43

......
as bs1 bs2bs,s−1

w1 w2 w3ws−1 ws

TABLE 7.3: Coefficients of an s-stage Runge-Kutta method

family of Runge-Kutta methods whose order of convergence is greater than
zero and with general form given by:

(RKs)



k1 = f(ti−1 + a1h, yi−1), (a1 usually 0)
k2 = f(ti−1 + a2h, yi−1 + b21hk1)
k3 = f(ti−1 + a3h, yi−1 + b31hk1 + b32hk2

..
ks = f(ti−1 + ash, yi−1 + bs,1hk1 + bs,2hk2 ++ bs,s−1hks−1)
yi = yi−1 + h(w1k1 + w2k2 ++ wsks),

(7.37)
All the coefficients of an (RKs) method are usually put in a tabular form as
in 7.3 implying that an (RKs) method can be described by a column vector
{ai| i = 1, ..., s}, an s × s strictly lower triangular matrix for the coefficients
{bij} and a row vector for the weights {wi| i = 1, ..., s}.

The basic criteria for the selection of the coefficients is to reach an O(hs+1)
truncation error, i.e., given that y ∈ Cs+1, f ∈ Cs,

y(ti+h)−y(ti)−h(w1k1(y(ti−1))+w2k2(y(ti−1))+....+wsks(y(ti−1))) = O(hs+1), s ≥ 1,

which in turn practically implies that:
1. ∀i = 2, ..., s,

∑i−1
j=1 bij = ai

2.
∑s
i=1 wi

We proceed with general RK methods of order 2, 3 and 4.

1. Methods of order 2.
This class is described by the formulae:

(RK2)

 k1 = f(ti−1, yi−1)
k2 = f(ti−1 + ah, yi−1 + bhk1)
yi = yi−1 + h(w1k1 + w2k2),

(7.38)

There are four coefficients a, b, w1 and w2 to be determined on the assumption

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 255

that y ∈ C3 in view of having:

y(t+ h)− y(t)− w1k1(y)− w2k2(y) = O(h3).

For that purpose, we proceed with a Taylor’s expansion to write:

y(t+ h) = y(t) + hy′(t) +
h2

2
y”(t) +O(h3).

Equivalently:

y(t+ h) = y(t) + hf(t, y(t)) +
h2

2
(ft(t, y(t)) + fy(t, y(t))f(t, y(t)) +O(h3).

If y(t+h)− y(t)−w1k1(y)−w2k2(y) = O(h3), it means that after expanding
k1(y) and k2(y), we would select the four coefficients of the method in view of
canceling the three terms f(t, y(t)), ft(t, y(t)) and fy(t, y(t)). Obviously, this
would lead to three equations in four unknowns and hence a family of method
that depends on one parameter.
On the basis that f ∈ C2 (since y ∈ C3), a two-variable Taylor’s expansion
for:

φ(h) = f(t+ ah, y(t) + bhf(t, y(t)),

gives :
φ(h) = φ(0) + hφ′(0) +O(h2),

i.e.,

φ(h) = f(t, y(t)) + ahft(t, y(t)) + bhfy(t, y(t))f(t, y(t)) +O(h2)

Consequently,

y(t+ h)− y(t)− w1k1(y)− w2k2(y) = ...

(1−w1−w2)f(t, y(t))+h2((
1

2
−w2a)ft(t, y(t))+(

1

2
−w2b)fy(t, y(t))f(t, y(t))+O(h3).

This leads to the equations:

w1 + w2 = 1, aw2 =
1

2
, bw2 =

1

2
. (7.39)

Hence, the solution can be written in terms of one parameter w = w2 > 0,
the other three being:

w1 = 1− w ; a = b =
1

2w
.

Consequently, we obtain a second-order Runge-Kutta family that depends on
one parameter w, 1

2 ≤ w ≤ 1:

(RK2(w))


k1 = f(ti−1, yi−1)
k2 = f(ti−1 + 1

2wh, yi−1 + h
2wk1)

k3 = f(ti−1 + a3h, yi−1 + b31hk1 + b32hk2

yi = yi−1 + h((1− w)k1 + wk2).

(7.40)

© 2014 by Taylor & Francis Group, LLC

256 Introduction to Numerical Analysis and Scientific Computing

0
1

2w
1

2w

1− w w

TABLE 7.4: Coefficients of a general two-stage Runge-Kutta method

0
a2 b21

a3 b31 b32

w1 w2 w3

TABLE 7.5: Coefficients of a general three-stage Runge-Kutta method

In a tabular form, a general second-order Runge Kutta is given in Table 7.4.
The previous schemes of modified Euler and Heun, obtained by numerical
integration, are particular cases of this family (RK2(w)), respectively for w =
1 and w = 1

2 .
2. Runge-Kutta methods of order higher than 2.
As we proceeded for second-order Runge-Kutta methods, third-order ones are
also established on the basis of Taylor’s expansions. On the basis of (RKs), a
general third-order Runge Kutta method has the following form:

(RK3)


k1 = f(ti−1, yi−1)
k2 = f(ti−1 + a2h, yi−1 + b21hk1)
k3 = f(ti−1 + a3h, yi−1 + b31hk1 + b32hk2)
yi = yi−1 + h(w1k1 + w2k2 + w3k3).

(7.41)

The eight coefficients {wi}, {ai}, et {bij} are determined on the basis that for
y ∈ C4 (f ∈ C3), one has:

y(t+ h)− y(t)− w1k1(y)− w2k2(y)− w3k3(y) = O(h4). (7.42)

Writing the method in tabular form, gives Table 7.5. The (7.42) would imply
canceling in the expansion of y(t + h) − y(t) − w1k1(y) − w2k2(y) − w3k3(y)
the six terms:

f(t, y(t)), ft(t, y(t)) fy(t, y(t)), ftt(t, y(t)), fty(t, y(t)) and fyy(t, y(t)),

thus leading to six equations in eight unknowns and therefore a family of
third-order Runge-Kutta methods depending on two variables. This will not

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 257

0
1
3

1
3

2
3 0 2

3

1
4 0 3

4

TABLE 7.6: Coefficients of a three-stage Runge-Kutta Heun method

be done here. For that purpose, we refer the reader to [18].
Instead, we give a third-order Runge-Kutta method (Heun of order 3) that
can be obtained using numerical quadrature on the integral equation (7.24).
Specifically, one uses the numerical integration formula:∫ ti

ti−1

f(t, y(t))dt =
h

4
(f(ti−1, y(ti−1)) + 3f(ti−1 +

2h

3
, y(ti−1 +

2h

3
)) +O(h4).

Thus:

y(ti) = y(ti−1) +
h

4
(f(ti−1, y(ti−1)) + 3f(ti−1 +

2h

3
, y(ti−1 +

2h

3
)) +O(h4).

Combined with the formula for the modified Euler on [ti−1, ti−1 + 2h
3], one

has:

y(ti−1 +
2h

3
) = y(ti−1) +

2h

3
f(ti−1 +

h

3
, y(ti−1) +

h

3
f(ti−1, y(ti−1)) +O(h3),

to conclude, combining the last identities, with:
y(ti) =

...y(ti−1)+
h

4
(f(ti−1, y(ti−1))+3f(ti−1+

2h

3
, y(ti−1)+

2h

3
f(ti−1+

h

3
, y(ti−1)+

h

3
f(ti−1, y(ti−1)))+....

....O(h4).
Discretizing this equation by dropping the O(h4) term and replacing the y(ti)
by yi for all i gives the three-stage Runge-Kutta Heun of order 3:

(RK3.H)


k1 = f(ti−1, yi−1)
k2 = f(ti−1 + h

3 , yi−1 + h
3k1)

k3 = f(ti−1 + 2h
3 , yi−1 + 2h

3 k2)
yi = yi−1 + h(1

4k1 + 3
4k3).

(7.43)

This method is summarized in Table 7.6. The same analysis can be carried
out for fourth-order Runge-Kutta, defined by:

(RK4)


k1 = f(ti−1, yi−1)
k2 = f(ti−1 + a2h, yi−1 + b21hk1)
k3 = f(ti−1 + a3h, yi−1 + b31hk1 + b32hk2)
k4 = f(ti−1 + a4h, yi−1 + b41hk1 + b42hk2 + b43hk3)
yi = yi−1 + h(w1k1 + w2k2 + w3k3 + w4k4).

(7.44)

© 2014 by Taylor & Francis Group, LLC

258 Introduction to Numerical Analysis and Scientific Computing

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

2
6

2
6

1
6

TABLE 7.7: Coefficients of the classical fourth-order Runge-Kutta method

0
1
3

1
3

2
3 − 1

3 1
1 1 -1 1

1
8

3
8

3
8

1
8

TABLE 7.8: Coefficients of the “ 3
8” fourth-order Runge-Kutta method

Seeking the thirteen unknown coefficients in order to have for y ∈ C5 f ∈ C4:

y(t+ h)− Y (t)− a1k1(y)− a2k2(y)− a3k3(y)− a4k4(y) = O(h5),

gives rise to a system of ten equations in thirteen unknowns and therefore a
family of methods that depend on three parameters.
We choose to give some of the mostly used fourth-order Runge-Kutta methods:
1. First fourth-order Runge-Kutta summarized in Table 7.7, expressed
in formulae as:

(RK4.1)


k1 = f(ti−1, yi−1)
k2 = f(ti−1 + h

2 , yi−1 + 1
2k1)

k3 = f(ti−1 + h
2 , yi−1 + 1

2k2)
k4 = f(ti−1 + h, yi−1 + k3)
yi = yi−1 + h(1

6k1 + 2
6k2 + 2

6k3 + 1
6k4).

(7.45)

2. Second fourth-order Runge Kutta
Uses the “3/8 rule,” which is given in Table 7.8. and the consequent formulae:

(RK4.2)


k1 = f(ti−1, yi−1)
k2 = f(ti−1 + h

3 , yi−1 + 1
3k1)

k3 = f(ti−1 + h
3 , yi−1 − 1

3k1 + k2)
k4 = f(ti−1 + h, yi−1 + k1 − k2 + k3)
yi = yi−1 + h(1

8k1 + 3
8k2 + 3

8k3 + 1
8k4).

(7.46)

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 259

7.4.4 Control of the Time-Step Size

When using one-step methods, there are two ways to handle the time
step control: Richardson extrapolation and embedded Runge-Kutta methods.
In what follows, we summarize the methods using the arguments given in [18].

1. Richardson Extrapolation

Let tol be a user’s computational tolerance.
For a given one-step method of order p, that has yielded the approximate
solution y0, y1, ..., yn−1 at times 0, t1, ...tn−1, such that:

max
0≤i≤n−1

|y(xi)− yi| ≤ tol,

where di = max {1, |yi|}. Then, based on h = tn−1 − tn−2, we perform the
following:
a. Compute successively, yn(h) and yn+1(h) based on yn−1, such that
|y(xn−1)− yn−1| ≤ tol.
b. Compute with a big step 2h, y1

n+1(2h).
It is shown in [18] that:

y(xn+1)− yn+1(h) =
yn+1(h)− y1

n+1(2h)

2p − 1
+O(hp+2) +O(|y(xn−1)− yn−1|).

(7.47)

Let Err =
yn+1(h)−y1n+1(2h)

2p−1 . Since such term estimates an error expression of

the form Chp+1 and given that O(|y(xn−1)−yn−1|) = O(tol) with h satisfying
O(hp+2) = O(h2 × tol), then two situations may occur:
Case 1 If |Err| ≤ hε0 × tol. In that case then we continue the computation
with the same h.
Case 2 Otherwise, if |Err| > hε0 × tol, then we repeat the computation with
h/2.
Whenever we reach case 1, we end up with:

y(xn+1)− yn+1(h) = O(hε0 × tol) +O(tol) = O(tol),

and continue hereon the adaptive process with the most recent value of h.
The above arguments using absolute errors can also be done using instead rela-
tive errors. This is specifically done in the following MATLAB program, in which
we have selected ε0 = tol. The consequent adaptive process is implemented
using the fourth-order Runge-Kutta (7.45).

© 2014 by Taylor & Francis Group, LLC

260 Introduction to Numerical Analysis and Scientific Computing

Algorithm 7.3 Adaptive Runge-Kutta Algorithm

function [t,Y]=myodeRK4Adaptive(T,h0,y0,tol)

% Input: T defines the interval [0,T];

% h0 defines the initial mesh size

% y0 the initial condition;

% tol sets the user’s relative tolerance

% Output: t is the set of discrete times: t(i) (t(1)=0);

% Y the set of approximations Y(i) at t(i)

h=h0;% set the initial value of h.

t=zeros(50000,1);Y=zeros(50000,1);%Initialize the vectors t and Y

t(1)=0;Y(1)=y0;i=1;

% Start the process

while t(i)<=T

Err=1; % Insure we go in the loop at least once

while Err>(h^(tol))*tol

Yim1=Y(i);

tim1=t(i);

% Evaluate with 2 steps of size h,

% using a Runge-Kutta fourth order method

Y1=RK4step(tim1,Yim1,h);

% The function f(t,y) is implicitly defined in RK4step

Y2=RK4step(tim1+h,Y1,h);

% Evaluate with one step of size 2h

% using same Runge-Kutta fourth order

Y21=RK4step(tim1,Yim1,2*h,a,b);

% Get relative error and conduct test

Err=abs(Y2-Y21)/max(abs(Y2),1);

if Err>h^(tol)*tol

h=h/2;% Divide h by 2

end

end % End of computation at t(i)... Update i, t, Y

i=i+1;t(i)=t(i-1)+h;Y(i)=Y1;

i=i+1;t(i)=t(i-1)+h;Y(i)=Y2;

if h/h0<10^(-6)*tol, break, end % Test against small h

if abs(Y2)> realmax/2, break, end % Test against overflows

end

t=t(1:i);Y=Y(1:i);% End of process: extract t and Y

As an example, consider the linear non-homogeneous initial value problem:

y
′
(t) = a ∗ y(t)− beat sin(bt), t > 0; y(0) = 1,

where a and b are constants. The solution of such problem is given by
y(t) = eat cos(bt). The solution exhibits simultaneously an “explosive” behav-
ior (particularly for large values of a) in addition to its oscillatory character

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 261

FIGURE 7.3: Graph of the solution to y
′
(t) = ay(t) − beat sin(bt), t >

0; y(0) = 1

due to the presence of the trigonometric term. The plot of the solution for the
case when a = 1; b = 4π; T = 4 is given in Figure 7.3. The results obtained
when applying Algorithm 7.3 are given in Table 7.9. One drawback of this
adaptive fourth-order Runge Kutta method is its cost in terms of evaluations
of the function f(., .). Specifically, it requires eight evaluations of f(., .) with
two steps of size h to obtain yn+1(h), followed by three evaluations of f(., .),
with a step of size 2h to obtain y1

n+1(2h); hence a total of eleven f(., .) eval-
uations to decide about the admissibility of h in pursuing the computation.
A remedy to such excess of function evaluations is reached through the use of
embedded Runge-Kutta methods.

εtol maxi
|yi−y(ti)|
max(1,|yi|) minh maxh

0.5× 10−4 1.542402× 10−5 9.765625× 10−4 0.0156
0.5× 10−5 7.914848× 10−5 4.882813× 10−4 0.0156
0.5× 10−6 1.245236× 10−6 2.441406×10−4 0.0078
0.5× 10−7 1.923099× 10−7 1.220703×10−4 0.0078
0.5× 10−8 4.543017× 10−8 6.103516×10−5 0.0039

TABLE 7.9: Results of applying Algorithm 7.3 to solve y
′
(t) = a ∗ y(t) −

beat sin(bt), t > 0; y(0) = 1

© 2014 by Taylor & Francis Group, LLC

262 Introduction to Numerical Analysis and Scientific Computing

t
0 0
1
3

1
3

− 1
2

3
2

TABLE 7.10: A second-order RK method embedded in third-order RK Heun
method

2. Embedded Runge-Kutta Schemes
Given that (the adaptive) Algorithm 7.3 may be severely costly, we circumvent
the problem of time step control by using one pair of embedded Runge-Kutta
methods.

Definition 7.4 A Runge-Kutta method of order p is said to be embedded
in a Runge-Kutta method of order q with p < q, if the implementation of the
order q method uses the same f function evaluations as those of the order p
method.

Here are examples giving pairs of embedded Runge-Kutta methods.

1. An Embedded (1,2): Euler’s explicit scheme is embedded in both the
modified Euler and Heun methods.

2. An Embedded (2,3): Another interesting case of a second-order
method embedded in a third-order one is obtained by taking w = 3

2
in (RK2(w)). We get then a second-order Runge-Kutta method which
is given in Table 7.10. One can check then that this table is embedded in
the third-order Heun scheme (RK3.H) since both use the same values
of k1 and k2. A similar approach is used in MATLAB ode23 solver on the
basis of the Runge-Kutta (2,3) pair of Bogacki and Shampine [3].

3. An Embedded (2,4): The second-order modified Euler is embedded
in the fourth-order Runge-Kutta method (RK41), since both use the
same values k1 and k2.

4. An Embedded (4,5): This pair (referred to as the Dormand-Prince
pair [12]), uses two embedded Runge-Kutta schemes of order 4 and 5,
which coefficients are shown respectively in Table 7.11 and Table 7.12.
Note that both methods use the same values of k1, k2, k3 and k4. The
MATLAB ode45 solver is based on a similar pair of embedded Runge-
Kutta methods.

We consider now an alteration of Algorithm 7.3 (based exclusively on a one-
step Runge-Kutta method), by implementing a pair of embedded Runge-Kutta
methods: M1 and M2, of respective orders p and p+ 1.

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 263

t
0 0
1
4

1
4

3
8

3
32

9
32

12
13

1932
2197 − 7200

2197
7296
2197

1 439
216 −8 3680

513 − 845
4104

25
216

1408
2565 − 2197

4104 − 1
5

TABLE 7.11: Coefficients of the fourth-order RK used in MATLAB ode45

solver

t
0 0
1
4

1
4

3
8

3
32

9
32

12
13

1932
2197 − 7200

2197
7296
2197

1 439
216 −8 3680

513 − 845
4104

1
2 − 8

27 2 − 3544
2565

1859
4104 − 11

40

16
135

6656
12825

28561
56430 − 9

50
2
55

TABLE 7.12: Coefficients of the fifth-order RK used in MATLAB ode45 solver

© 2014 by Taylor & Francis Group, LLC

264 Introduction to Numerical Analysis and Scientific Computing

Based on h = tn − tn−1 and on yn, such that |y(xn) − yn| ≤ tol, we perform
the following:

a. Compute y1
n+1(h) with step h, using M1, as a substitute to y1

n+1(2h) in
(7.47). This is done at the cost of four functions evaluations.
b. Compute yn+1(h), using M2 at the cost of one additional function evalu-
ation.
As a total, a. and b. would then require five function evaluations, instead of
eleven as was the case in Algorithm 7.3, i.e., an economy of six evaluations of
f(., .)! Thus, one writes:

y(xn+1)− yn+1(h) =
yn+1(h)− y1

n+1(h)

2p − 1
+O(hp+2) +O(|y(xn)− yn|).

Let Err =
yn+1(h)−y1n+1(h)

2p−1 . Given that such term estimates an error expression

of the form Chp+1 and as O(|y(xn) − yn|) = O(tol), then, with h satisfying
O(hp+2) = O(h2 × tol), two situations may occur:
Case 1 If |Err| ≤ hε0 × tol, we continue the computation with the same h.
Case 2 Otherwise, (|Err| > hε0 × tol), we repeat the computation with h/2.
Whenever we reach case 1, we end up with:

y(xn+1)− yn+1(h) = hε0 × tol +O(tol) = O(tol),

and continue the adaptive process based on the 2 embedded Runge-Kutta
methods M1 and M2.

7.5 Adams Multistep Methods

When using higher order one-step Runge-Kutta methods, the number of
function evaluations increase significantly. This is particularly so when the
function f(., .) is vector-valued. For example in case f : Rn×[0, T]→ Rn, then
using a fourth-order Runge-Kutta method would require 4n scalar function
evaluations at each step. Such necessity may be too time consuming.
Thus, use of multistep methods is precisely to avoid such issue of multiple
function evaluations when using one-step methods. In this chapter, we give
an overview of three types of multistep methods:

1. Adams-Bashforth multistep explicit schemes

2. Adams-Moulton multistep implicit schemes

3. Backward difference (BDF) methods, used to solve special “stiff” sys-
tems of ODEs. These are ODEs systems that have solutions with sharp
variations in short times.

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 265

A major reference on multistep methods is [18]. In this section, we focus
mainly on Adams type methods. To present these methods, our starting point
is the sequence of integral equations (7.24) introduced above:

yi − yi−1 =

∫ ti

ti−1

f(t, y(t))dt, i = 1, ..., N.

Letting g(t) = f(t, y(t)), then obtaining an Adams type method consists in

replacing
∫ ti
ti−1

g(t)dt by a numerical integration formula derived through the

replacement of g(t) with a Lagrange interpolation polynomial p(t) (as intro-
duced in Chapter 3) based on a specific set of points {tj}. Thus:
- To obtain a k-multistep explicit Adams-Bashforth p(t) is of degree k−1 and
based on the data set of k pairs:

{(ti−1, g(ti−1)), ..., (ti−k, g(ti−k)), i− k ≥ 0,

while:
- Obtaining a k-multistep implicit Adams-Moulton p(t) is also of degree k−1
and is based on the k pairs:

{(ti, g(ti)), (ti−1, g(ti−1)), ..., (ti−k, g(ti−k+1)), i− k + 1 ≥ 0,

As a result, we obtain the following schemes, using the notation fj ≡ f(tj , yj).

7.5.1 Adams Schemes of Order 1

One obtains successively:

yi = yi−1 + hfi−1 i ≥ 1, (7.48)

for Adams-Bashforth and

yi = yi−1 + hfi i ≥ 1, (7.49)

for Adams-Moulton. These are respectively Euler’s explicit and implicit one-
step methods. The first was discussed earlier and the second requires solving
the (usually) nonlinear equation:

yi − hf(ti, yi) = yi−1. (7.50)

Solving (7.50) is considered in the last section of this chapter, within the
context of Backward Difference Formulae (BDF) methods.

7.5.2 Adams Schemes of Order 2

yi = yi−1 + h[
3

2
fi−1 −

1

2
fi−2], i ≥ 2, (7.51)

© 2014 by Taylor & Francis Group, LLC

266 Introduction to Numerical Analysis and Scientific Computing

is the Adams-Bashforth version, and:

yi = yi−1 +
1

2
h[fi + fi−1], i ≥ 1. (7.52)

is the Adams-Moulton one. It is precisely the trapezoidal rule formula obtained
earlier in (7.32). As (7.49), (7.52) requires also solving a nonlinear equation:

yi −
1

2
hf(ti, yi) = yi−1 +

1

2
hfi−1. (7.53)

However, an important point about Adams methods can be noted here.
Through a predictor-corrector approach that uses Euler’s explicit as a pre-
dictor scheme, followed for correction by the second-order Adams-Moulton,
one gets the following method:

i ≥ 1 :

y
(P)
i = yi−1 + hfi−1

f
(P)
i = f(ti, y

(P)
i),

yi = y
(C)
i = yi−1 + 1

2h[f
(P)
i + fi−1].

(7.54)

It is easily checked that (7.54) is precisely Heun’s second-order Runge-Kutta
method (RK2.H). This reveals the following points in the use of Adams meth-
ods:
a- The combination of Adams-Bashforth’s method of order 1, as predictor with
Adams-Moulton’s method of order 2 as corrector gives an explicit method of
order 2.
b- A first-order Adams-Bashforth method is thus embedded in a second-
order Adams-Moulton scheme, suggesting embedding the second-order (7.51)
in a third-order Adams-Moulton as is done in what follows.
c- This embedded predictor-corrector pair can be obviously used for control-
ling the step size h as explained in Section 7.4.4.

7.5.3 Adams Schemes of Order 3

On that basis, we couple (7.51) as a predictor scheme with the third-order
Adams-Moulton implicit formula:

yi = yi−1 + h[
5

12
f(ti, yi) +

2

3
f(ti−1, yi−1)− 1

12
f(ti−2, yi−2)], (7.55)

for i ≥ 2.
As a result of the pair (7.51) - (7.55), one gets a two step third-order predictor-
corrector scheme:

i ≥ 2 :

y
(P)
i = yi−1 + h[3

2fi−1 − 1
2fi−2]

f
(P)
i = f(ti, y

(P)
i),

yi = y
(C)
i = yi−1 + h[5

12f
(P)
i + 2

3fi−1 − 1
12fi−2].

(7.56)

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 267

One advantage of this two step method of order 3 over a third-order Runge-
Kutta procedure is in terms of function f evaluations when computing yi, i ≥
2, which requires computing:

• fi−1 = f(ti−1, yi−1) and

• f (P)
i = f(ti, y

(P)
i).

Note at the same time some disadvantages of this method:

• Since the implementation of (7.56) begins at i = 2 and given that y0 =
y(0), it is necessary to obtain y1 by using a one-step method of order 3.
For that purpose, we can use a Runge-Kutta method of order 3 such as
(RK3.H) or even simply a Runge-Kutta method of order 2, given that
the error coincides with the local truncation of the method at t = 0 (see
Remark 7.6).

• On the other hand, (7.56) requires that after computing yi, i ≥ 2, one
saves fi−1 for use when computing at the next step, yi+1.

7.5.4 Adams Methods of Order 4

On the same basis, we obtain higher order Adams method. We restrict
ourselves to a fourth -order Adams multistep method:

i ≥ 3 :

y
(P)
i = yi−1 + h[23

12fi−1 − 4
3fi−2 + 5

12fi−3]

f
(P)
i = f(ti, y

(P)
i),

yi = y
(C)
i = yi−1 + h[3

8f
(P)
i + 19

24fi−1 − 5
24fi−2 + 1

24fi−3].

(7.57)

Similarly to the third-order Adams, (7.56), this Adams fourth-order predictor-
corrector, (7.57), requires also two f function evaluations, in addition to stor-
ing simultaneously fi and fi−1 to compute later on yi+1.
On the other hand, starting the method requires in addition to y0 = y(0), y1

and y2. These can be computed using a Runge-Kutta Heun method of order
3 or even 2 (as noted in Remark 7.6).

7.6 Multistep Backward Difference Formulae

Consider the Euler implicit scheme (7.49):

i ≥ 1 : yi = yi−1 + hf(ti, yi)⇔ yi − hf(ti, yi) = yi−1.

© 2014 by Taylor & Francis Group, LLC

268 Introduction to Numerical Analysis and Scientific Computing

At this point, there are two distinct cases that arise:

a. f linear in y:
In this case when f(t, y) = −a(t)y + b(t), and (7.49) becomes explicit in the
sense that Euler implicit formula becomes:

(1 + ha(ti−1))yi = yi−1 + b(ti−1)

and yi can be found explicitly, provided:

1 + ha(ti−1) 6= 0, ∀i,

in which case one has:

yi =
yi−1 + b(ti−1)

1 + ha(ti−1)
.

Such is the case:

1. For all h, whenever a(t) ≥ 0, f(., .) being then monotone decreasing
with respect to y.

2. Otherwise, one must put a restriction on h:

h ≤ h0 =
c0

maxt∈[0,T] |a(t)|
, c0 < 1. (7.58)

Such a condition is similar to that found in Theorem 7.2 for explicit
schemes.

b. f nonlinear in y:
In that case, we let r(y) = y − hf(ti, y) − yi−1 and obtaining yi, reduces to
solving:

r(y) = 0.

Out of the methods studied in Chapter 2, we retain Newton’s method, on the
basis that it can be straightforwardly generalized when f is a vector function.
Newton’s iterative formula to solve r(yi) = 0 is given by:{

r
′
(y

(k)
i)(y

(k+1)
i − y(k)

i) = −r(y(k)
i),

y
(0)
i = yi−1 or using Euler’s explicit: y

(0)
i = yi−1 + hfi−1.

(7.59)

Now r
′
(y) = 1− hfy(ti, y). As when f(t, y) is linear in y, we also distinguish

here two cases:

1. f(., .) is monotone decreasing with respect to y.

2. If not, one must put a restriction on h:

h ≤ h0 =
c0

max(t,y)∈[0,T]×Dy |fy(t, y)|
, c0 < 1. (7.60)

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 269

In either case Newton’s iteration becomes:

y
(k+1)
i = y

(k)
i −

r(y
(k)
i)

1− hfy(ti, y
(k)
i)

.

The interesting property of the Euler implicit scheme is its strong stability
property when f(., .) is monotone decreasing with respect to y. Specifically,
consider the distinct solutions {wi} and {zi}, obtained from:

i ≥ 1 : wi − hf(ti, wi) = wi−1,

and
i ≥ 1 : zi − hf(ti, zi) = zi−1,

w0, z0 ∈ Dy. Subtracting the second equation from the first yields:

i ≥ 1 : wi − zi − h[f(ti, wi)− f(ti, zi)] = wi−1 − zi−1.

Multiplying this equation by wi − zi and using the monotony of f , yields:

i ≥ 1 : (wi − zi)2 − h(wi − zi)[(f(ti, wi)− f(ti, zi)] = (wi−1 − zi−1)(wi − zi).

Given the positiveness of the left hand side of this identity, one obtains the
inequality:

i ≥ 1 : (wi − zi)2 − h(wi − zi)[(f(ti, wi)− f(ti, zi)] ≤ |wi−1 − zi−1|.|(wi − zi|.

This gives the following stability result:

Theorem 7.7 If:

(f(t, w)− f(t, z))(w − z) ≤ 0, ∀t ∈ [0, T], w, z ∈ Dy,

then:
|wi − zi| ≤ |w0 − z0|, ∀i.

This stability property applies when we consider multistep generalizations of
the Euler implicit scheme in the form of the Backward Difference Formulae
(BDF). Here are up to fourth oder BDF formulae:

- Order 2:

i ≥ 2 : yi −
2

3
hf(ti, yi) =

4

3
yi−1 −

1

3
yi−2.

- Order 3:

i ≥ 3 : yi −
6

11
hf(ti, yi) =

18

11
yi−1 −

9

11
yi−2 +

2

11
yi−3.

- Order 4:

i ≥ 4 : yi −
12

25
hf(ti, yi) =

48

25
yi−1 −

36

25
yi−2 +

16

25
yi−3 −

3

25
yi−4.

© 2014 by Taylor & Francis Group, LLC

270 Introduction to Numerical Analysis and Scientific Computing

7.7 Approximation of a Two-Points Boundary Value
Problem

Let b be a real-valued function on an interval Ω = (0, L), with b(x) ≥ 0.
Consider the one-dimensional boundary-value problem:
Find u : Ω −→ R , such that:

−u
′′
(x) + b(x)u = f(x),∀x ∈ (0, L), (1) u(0) = α, u(1) = β (2) (7.61)

A finite-difference discretization consists in replacing the differential equation
7.61 (1) with a difference equation. Specifically, consider the discrete domain:

Ωh = {xi = ih|0 = x0 < x1 < < xN = 1}, Nh = 1,

that uniformly partitioned Ω. Le bi = b(xi). The discrete system corresponding
to (7.61) is defined as follows:

−δ2
hUi + biUi = fi = fi = f(xi), ∀i, 0 < i < N, (1) U0 = α, U1 = β (2)

(7.62)
For this one-dimensional model, note that the solution to (7.62) depends on
N + 1 parameters, of which M = N − 1 [U1 U2....UM]T are unknowns, since
[U0 UN] are given. Thus, the resulting system obtained from (7.62) takes the
following matrix form:

AU = F, (7.63)

the matrix A ∈ RM,M being tri-diagonal. In case, a(x) = 1 and b(x) = 0, A is
the well-known “central difference matrix”:

A =
1

h2


2 −1 0 ... 0
−1 2 −1 0 0
...
... 0 −1 2 −1
0 0 ... −1 2

 , F =


f1 + α/h2

f2

...
fM−1

fM + β/h2

 .

It can be checked that:

• A is a sum of a tri-diagonal matrix and a diagonal matrix.

• A is symmetric.

Remark 7.8 Note that the solution of the continuous problem is in a (fixed)
vector space of the type Ck(Ω) while that of the discrete problem is in a (vari-
able) finite-dimension space RN , with limh→0N =∞.

To provide a coherent framework for analyzing the finite-difference discretiza-
tion, one introduces the concepts of the “restriction” and “prolongation (ex-
tension)” operators.

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 271

Definition 7.5 Given a function v : Ω→ R, such that v ∈ C(Ω), the restric-
tion rh,N (v) of v on Ωh is such that V = rh,N (v) ∈ RN+1, with:

Vi = v(xi), ∀i = 0, ...N.

Similarly, one defines the restriction of v on Ωh, rh,N (v) ∈ RN+1. By conven-
tion we take: rh ≡ rh,N .
We now define the prolongation:

Definition 7.6 Given V ∈ RN+1, V = [V0 V1....VN]T , a prolongation ph,NV
of V in C(Ω) is a function v ∈ C(Ω), such that rh,N (ph,NV) = V .

Note that there exist several prolongation operators for a vector V ∈ RN+1.
For example, one may use linear, quadratic or cubic spline interpolations. In
the case of finite-differences, it is sufficient to use piecewise linear splines:

v(x) = rh,M (V)(x) = (Vi(xi+1 − x) + Vi+1(x− xi))/h, i = 0, ..., N.

We consider now the convergence of the discrete solution rh,N (U) of (7.62) to
the solution u of Poissons’s equation (7.61). A preliminary result shall be first
stated.

Theorem 7.8 If the solution u to (7.61) is in C2(Ω) ∩ C(Ω), then one has:

max
x
|u(x)− ph,N (rh,N (u))(x)| ≤ ch2 max

x
|u
′′
(x)|.

On the basis of this result and the inequality:

max
x
|u(x)− ph,NU(x)| ≤ max

x
||u(x)− ph,N (rh,Nu)(x)|+max

x
|ph,N (rh,Nu(x))− ph,NU(x)|,

then, it is sufficient to study the convergence of ph,NU to ph,N (rh,Nu) to
obtain convergence of ph,NU to u. Since:

max
x
|ph,N (rh,Nu)(x)− ph,NU(x)| = |max

i
|u(xi)− Ui|

one needs to estimate maxi |ui − Ui| to obtain the convergence of the discrete
solution ph,NU to the exact solution u. This requires first a stability result
(found in [21]):

Theorem 7.9 The matrix A in (7.63) is such that:

max
i
|Ui| ≤ C max

i
|Fi|,

where C is independent from h.

Using the truncation error related to the second-order central difference for-
mula, we can then prove:

© 2014 by Taylor & Francis Group, LLC

272 Introduction to Numerical Analysis and Scientific Computing

Theorem 7.10 If the solution u to (7.61) is such that, u ∈ C4(Ω) ∩ C(Ω).
Then the approximation Uh = {Ui} to uh = {ui = u(xi)} that solves (7.63)
satisfies the estimate:

max
i
|u(xi)− Ui| ≤ Ch2,

C independent from h.

Proof. The proof is a classical procedure in numerical mathematics. It uses
Theorem 7.9 and the estimate associated with the second-order central differ-
ence formula:

u
′′
(xi) = δ2

hu(xi) + h2εi(u), v ∈ C4, 1 ≤ i ≤ N.

where εi(u) = cd
4u
dx4 (ηi), xi−1 < ηi < xi+1. One checks ε = {εi(u)} satisfies:

max
i
|εi| ≤ C1,

with C1 independent from h and function of maxx |u(4)(x)|. To complete the
proof, one uses:

A(u− U) = h2ε,

Using the stability concept of Theorem 7.9, one directly obtains the estimates
of the theorem.

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 273

7.8 Exercises

1. Show that each of the following (IV P) has a unique solution:

(a) y′ = y sin(t), 0 ≤ t ≤ 1, y(0) = 1

(b) y′ = e(t−y)/2, 0 ≤ t ≤ 1, y(0) = 1

(c) y′ = 2t2y
1+t4 , 0 ≤ t ≤ 1, y(0) = 1

2. Verify that each of the following functions f(t, y(t)) satisfies a Lipschitz
condition on the set:

D = {(t, y)|0 ≤ t ≤ 1,−∞ < y < +∞}

and determine the corresponding Lipschitz constant in each case.

(a) f(t, y(t)) = t3y + 1

(b) f(t, y(t)) = 1− y2

(c) f(t, y(t)) = e(t−y)/2

(d) f(t, y(t)) = −ty + 3 t
y2

3. Consider the following (IV P):

y′ = −4y + t, 0 ≤ t ≤ 1, y(0) = 1

Use Picard’s method to generate the functions y(i)(t) for i = 0, 1, 2.

4. Use Euler’s method to solve the following (IV P)

(a) y′(t) = e(t−y)/2, 0 ≤ t ≤ 1, y(0) = 1, h = 0.25

(b) y′(t) = −y + ty3/2, 2 ≤ t ≤ 4, y(2) = 0, h = 0.25

(c) y′(t) = 1 + y/t2, 1 ≤ t ≤ 2, y(1) = 1, h = 0.25

5. Use Heun’s method (RK2.H) to solve the following initial value prob-
lems:

(a) y′(t) = te3t − 2y2, 0 ≤ t ≤ 1, y(0) = 0, h = 0.2

(b) y′(t) = t+ (t− y)2, 0 ≤ t ≤ 2, y(0) = 1, h = 0.5

6. Consider the following initial value problem:

(IV P)

{
dy
dt = t2 + y2 ; t ∈ [0, 1.5]
y(0) = 1

(a) Write first the discrete scheme of Euler’s method, (RK1), then use
2 steps of this scheme to approximate y(0.25) and y(0.50).

© 2014 by Taylor & Francis Group, LLC

274 Introduction to Numerical Analysis and Scientific Computing

• Discrete Scheme

(RK1)

{
..
yi+1 = ..

• Express all the computed results with a precision p = 3.

i ti yi k1 yi+1

0
1

(b) Write first the discrete scheme of Heun’s method, (RK2.H), then
use two steps of this scheme to approximate y(0.75) and y(1).

• Discrete Scheme

(RK2.H)

 ...
..
yi+1 = ..

• Express all the computed results with a precision p = 3.

i ti yi k1 k2 yi+1

0
1

(c) Write first the discrete scheme of the midpoint rule, (RK2.M), then
use two steps of this scheme to approximate y(1.25) and y(1.50).

• Discrete Scheme

(RK2.M)

 ...
..
yi+1 = ..

• Express all the computed results with a precision p = 3.

i ti yi k1 k2 yi+1

0
1

7. Repeat Exercise 5 using the midpoint method (RK2.M)

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 275

7.9 Computer Exercises

1. Test Algorithm 7.3: function [t,Y]=myodeRK4Adaptive(T,h0,y0,tol)

on the following initial value problems:

• y′(t) = sin(t)y1/2 + cos(t)y, y(0) = 1.

• The Van der Pol equation:

y
′′
− (1− y2)y

′
+ y = 0, 0 < t ≤ 10, y(0) = 1, y

′
(0) = 0,

after transforming it into a system of first-order equations.

2. Transform Algorithm 7.3 so as to have the control of the time step done
using the following pairs of embedded Runge-Kutta methods:

• (RK2(w)) obtained by taking w = 3
2 embedded in the third-order

Heun scheme (RK3.H).

• The pair of Runge-Kutta schemes of order 4 and 5, whose coeffi-
cients are shown respectively in Table 7.11 and Table 7.12.

• Test the resulting algorithms on the following initial value prob-
lems:

(a) y
′
(t) = ay(t)− beat sin(bt), t > 0; y(0) = 1.

(b) The Van der Pol equation:

y
′′
− (1− y2)y

′
+ y = 0, 0 < t ≤ 10, y(0) = 1, y

′
(0) = 0,

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

Answers to Odd-Numbered Exercises

Chapter 1

• Exercise 1:
1.a e ' (2.718)10 ' (10.10110.......)2.
1.b (0.875)10 = (0.111)2.
1.c (792)10 = (1100011000)2

• Exercise 3:
3.a (671.535)8 = (441.681)10.
3.b (1145.32)8 = (613.40625)10.

• Exercise 5:
5.- x = (0.6)10 = (0.46314)8 = (0.1001)2.
5.- x = (0.6)10 = (0.1001)2.

• Exercise 7:
7.a Incorrect
7.b Correct
7.c Correct
7.d Incorrect
7.e Correct

• Exercise 9:

t c(8) f(23)
0 10 000 101 000 000 000 001 000 . . . 000︸ ︷︷ ︸

11− zeros

• Exercise 11:
11.a x = +0
11.b x = −0
11.c x = NaN
11.d x = NaN
11.e x = +1× 2−126

11.f x = +1.1111× 22

11.g x = +1.0× 20

11.h x = +1.10011001100110011001101× 2123

277

© 2014 by Taylor & Francis Group, LLC

278 Introduction to Numerical Analysis and Scientific Computing

• Exercise 13:
13.a 6.573972× 10−1

13.b 2.979802× 1083

13.c 3.301920× 1081

13.d 8.128175418× 105

13.e 9.462402× 106

13.f 2.5281767× 103

13.g 3.506323× 103

13.h 3.3027656× 1080

13.i 2.508630× 1079

• Exercise 15:
15.a x = −xmin.
15.b succ(x) = [80711111]16; pre(x) = [80800001]16

• Exercise 17:
17.a b = [00480000]16

17.b succ(b) = [00480001]16

17.c b = [1802000000000000]16

17.d pre(b) = [1801FFFFFFFFFFFF]16

• Exercise 19:
19.a

First method: f(x) =

{
cos2 x

1+sin x if x ' π

2
+ 2kπ, k ∈ Z

1− sinx otherwise.

Second method: f(x) =

1− x+
x3

3!
+ . . . if x ' π

2
+ 2kπ, k ∈ Z

1− sinx otherwise.
19.b

First method: f(x) =

{
sin2 x

1+cos x if x ' π

2
+ 2kπ, k ∈ Z

1− cosx otherwise.

Second method: f(x) =

x2

2! −
x4

4!
+ . . . if x ' 0

1− cosx otherwise.
19.c

First method: f(x) =

{
cos 2x if x ' ±π

4
+ k

π

2
, k ∈ Z

2 cos2 x− 1 otherwise.

Second method: f(x) =

{
.... if x ' π

4
2 cos2 x− 1 otherwise.

19.d f(x) =

1− x+ x2

3! + if x ' 0
(cosx− e−x)

sinx
otherwise.

19.e f(x) =

{
2(x

2

2! + x3

3! + x6

6! + . . .) if x ' 0

ex − sinx− cosx otherwise.

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 279

• Exercise 21:

21.a First method: f(x) =

{
f(x) = ln x

e if x ' 0

lnx− 1, otherwise.

Second method: f(x) =

f(x) = e−1(x− e)− e−2

2
(x− e)2 +

e−3

3
(x− e)3 + . . . if x ' e

lnx− 1, otherwise.

21.b f(x) =

2 lnx if x ' 1

lnx− ln(
1

x
), otherwise.

21.c f(x) =

{
− 1

2 −
x
3 if x ' 0

x−2(sinx− ex + 1), otherwise.

21.d f(x) =

{
e
2! (x− 1)2 +

e

3!
(x− 1)3 + . . . if x ' 1

ex − e, otherwise.

• Exercise 23:

23.a f(x) =


−1√

x2 − 1 + |x|
if x < 0, |x| >>

x+
√
x2 − 1 otherwise

23.b Directly with 3 significant digits, f(−102) = 0. Using remedy with
3 significant digits, f(−102) = −1

2×102 = −0.005000.

• Exercise 25:

25.a f(x) =


2 +

2

3!
x2 +

2

5!
x4 + . . . if x ' 0

ex + e−x

x
otherwise

.

25.b f(0.1) = 2
25.c f(0.1) = 2.003
25.d 4.83× 10−2; 1.672211587177143× 10−4

© 2014 by Taylor & Francis Group, LLC

280 Introduction to Numerical Analysis and Scientific Computing

Chapter 2

• Exercise 1:
1.a f(x) = x− 2 sinx
The first bisector y = x and the function y = 2 sinx intersect at 3 points
with respective abscissas:

root1 = 0, root2 > 0, root3 < 0

Therefore root1=0 is an exact root of f(x) = x−2 sinx, while root2 and
root3 can be approximated by the bisection method.
•π2 < root2 < 3π

4 , as f(π2)× f(3π
4) < 0

n an bn rn+1 f(rn+1)
0 pi/2=1.5708 3pi/4=2.3562 1.9635 +
1 1.5708 1.9635 -1.7671 -
2 1.7671 1.9635 1.8653 -
3 1.8653 1.9635 1.9144 +
4 1.8653 1.9144 1.8899 -
5 1.8899 1.9144 1.9021 +
6 1.8899 1.9021 1.8960 +
7 1.8899 1.8960 1.8929 .

The bisection method took 7 iterations to compute root2 ≈ 1.8960 up
to 3 decimals.(The 8th confirms that the precision is reached). •−3π

4 <
root3 < −π

2 , as f(−3π
4)× f(−π2) < 0

n an bn rn+1 f(rn+1)
0 -3pi/4= -2.3562 -pi/2=-1.5708 -1.9635 -
1 -1.9635 -1.5708 -1.7671 +
2 -1.9635 -1.7671 -1.8653 +
3 -1.9635 -1.8653 -1.9144 -
4 -1.9144 -1.8653 -1.8899 +
5 -1.9144 -1.8899 -1.9021 -
6 - 1.9021 -1.8899 -1.8960 -
7 -1.8960 -1.8899 -1.8929 .

The bisection method took 7 iterations to compute root3 ≈ −1.8960 up
to 3 decimals.(The 8th confirms that the precision is reached).
1.b f(x) = x3 − 2 sinx
The cubic function y = x3 and the function y = 2 sinx intersect at 3
points with respective abscissas:

root1 = 0, root2 > 0, root3 = −root2 < 0.

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 281

Therefore root1 = 0 is an exact root of f(x) = x3 − 2 sinx, while root2
and root3 can be approximated by the bisection method.
1 < root2 < 1.5, as f(1)× f(1.5) < 0.
The same table as in (a) can be constructed to obtain the sequence of
iterates:

{1.2500, 1.1250, 1.1875, 1.2188, 1.2344, 1.2422, 1.2383, 1.2363}.

Thus, the bisection method took 7 iterations to compute root2 ≈ 1.2363
up to 3 decimals.(The 8th confirms that the precision is reached).
1.c f(x) = ex − x2 + 4x+ 3
The exponential function y = ex and the parabola y = x2 − 4x − 3
intersect at 1 point with negative abcissa : root < 0. Therefore the
function f(x) = ex − x2 + 4x+ 3 has a unique negative root, with:
• − 1 < root < 0, as f(−1)× f(0) < 0

n an bn rn+1 f(rn+1)
0 -1 0 -0.5 +
1 -1 -0.5 -0.75 -
2 -0.75 -0.5 -0.6250 +
3 -0.75 -0.6250 -0.6875 +
4 -0.75 - 0.6875 -0.7188 +
5 -0.75 - 0.7188 - 0.7344 +
6 - 0.75 - 0.7344 -0.7422 -
7 - 0.7422 -0.7188 -0.7383 +
8 - 0.7422 -0.7305 -0.7363 -
9 - 0.7364 -0.7305 - 0.7354 +

10 - 0.7364 -0.7335 - 0.7349 -
11 - 0.7349 -0.7335 - 0.7351 -
12 - 0.7349 -0.7335 - 0.7350

The bisection method took 12 iterations to compute root1 ≈ −1.8960
up to 3 decimals.(The 13th confirms that the precision is reached).
1.d f(x) = x3 − 5x− x2

The cubic function y = x3 − 5x and the function y = x2 intersect at 3
points with respective abscissas:

root1 = 0, root2 > 0, root3 < 0.

Therefore root1 = 0 is an exact root of f(x) = x3− 5x−x2, while root2
and root3 can be approximated by the bisection method.
2 < root2 < 3, as f(2)× f(3) < 0.
The same table as in (a) can be constructed to obtain the sequence of
iterates approximating root2 up to 3 decimals:

{2.5000, 2.7500, 2.8750, 2.8125, 2.7812, 2.7969, 2.7891, 2.7930}.

© 2014 by Taylor & Francis Group, LLC

282 Introduction to Numerical Analysis and Scientific Computing

Thus, the bisection method took 7 iterations to compute root2 ≈ 2.7930
up to 3 decimals.(The 8th confirms that the precision is reached).
−2 < root3 < −1, as f(−2)× f(−1) < 0.
One obtains the sequence of iterates approximating root3 up to 3 deci-
mals:

{−1.5000,−1.7500,−1.8750,−1.8125,−1.7812,−1.7969,−1.7891,−1.7930}.

Thus, the bisection method took 7 iterations to compute root3 ≈
−1.7930 up to 3 decimals.(The 8th confirms that the precision is
reached).

• Exercise 3:
Based on the bisection method, the theoretical number of iterations to
approximate a root up to 4 decimal figures is k = 11.

3.a f(x) = x3 − ex
The computed sequence of iterations is:
r1 = 1.500, r2 = 1.7500, r3 = 1.8750, r4 = 1.8125, r5 = 1.8438,
r6 = 1.8594,
r7 = 1.8516, r8 = 1.8555, r9 = 1.8574, r10 = 1.8564, r11 = 1.8569.
3.b f(x) = x2 − 4x+ 4− lnx
The computed sequence of iterations is:
r1 = 1.500, r2 = 1.2500, r3 = 1.3750, r4 = 1.4375, r5 = 1.4062,
r6 = 1.4219,
r7 = 1.4141, r8 = 1.4102, r9 = 1.4121, r10 = 1.4131, r11 = 1.4126.
3.c f(x) = x3 + 4x2 − 10
The computed sequence of iterations is:
r1 = 1.500, r2 = 1.2500, r3 = 1.3750, r4 = 1.3125, r5 = 1.3438,
r6 = 1.3594,
r7 = 1.3672, r8 = 1.3633, r9 = 1.3652, r10 = 1.3643, r11 = 1.3647.
3.d f(x) = x4 − x3 − x− 1
The computed sequence of iterations is:
r1 = 1.500, r2 = 1.7500, r3 = 1.6250, r4 = 1.5625,
r5 = 1.5938,
r6 = 1.6094, r7 = 1.6172, r8 = 1.6211, r9 = 1.6191, r10 = 1.6182, r11 =
1.6177.
3.e f(x) = x5 − x3 + 3
The computed sequence of iterations is:
r1 = 1.500, r2 = 1.7500, r3 = 1.8750, r4 = 1.9375, r5 = 1.9688,
r6 = 1.9844,
r7 = 1.9922, r8 = 1.9961, r9 = 1.9980, r10 = 1.9990, r11 = 1.9995.
3.f f(x) = e−x − cosx The computed sequence of iterations is:
r1 = 1.500, r2 = 1.2500, r3 = 1.3750, r4 = 1.3125, r5 = 1.2812,
r6 = 1.2969,
r7 = 1.2891, r8 = 1.2930, r9 = 1.2910, r10 = 1.2920, r11 = 1.2925.

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 283

3.g f(x) = ln(1 + x)− 1
x+1

The computed sequence of iterations is:
r1 = 1.500, r2 = 1.7500, r3 = 1.8750, r4 = 1.9375, r5 = 1.96888,
r6 = 1.9844,
r7 = 1.9922, r8 = 1.9961, r9 = 1.9980, r10 = 1.9990, r11 = 1.9995.

• Exercise 5:
f(x) = ln(1− x)− ex
f(x) = ln(1−x) is monotone increasing on (−∞, 1); y = ex is monotone
increasing on (−∞,+∞), ⇒ the 2 curves intersect at a unique point
which is the root of f .
−1 < root < 0, as f(−1)× f(0) < 0

n an bn rn+1 f(rn+1)
0 -1 0 -0.5 -
1 -1 -0.5 -0.75 +
2 -0.75 -0.5 -0.6250 -
3 -0.75 -0.6250 -0.6875 .

• Exercise 7:
7.a Incorrect. For example for n = 0, r > a0+b0

2 .
7.b Always correct since:

∀n, r ∈ (an, bn), therefore, bn − r ≤ bn − an = 2−n(b0 − a0).

7.c Incorrect on the basis that rn+1 = an+bn
2 with rn being either an or

bn but definitely not always bn.
7.d Incorrect on the basis that rn+1 = an+bn

2 with rn being either an or
bn but definitely not always an.

• Exercise 9:
f(x) = x5 − x3 − 3, 1 < root < 2 as f(1)× f(2) < 0.

rn+1 = rn − r5n−r
3
n−3

5r4n−3r2n
; r0 = 1+2

2 = 1.5. The first 3 iterates by Newton’s

method are: r1 = 1.4343; r2 = 1.4263; r3 = 1.4262.

• Exercise 11:
x = ln(3) ⇒ ex − 3 = 0 ⇒ f(x) = ex − 3; root = ln(3), with
1 < root < 2 as f(1)× f(2) < 0
rn+1 = rn− ex−3

ex , with r0 = 1+2
2 = 1.5. The iterates of Newton’s method

approximating root up to 5 decimals are:
r1 = 1.16939; r2 = 1.10105; r3 = 1.10106; r4 = 1.09862; r5 =
1.1.09861

• Exercise 13:
f(x) = x− e

x ; roots of f : x = ±
√
e.

© 2014 by Taylor & Francis Group, LLC

284 Introduction to Numerical Analysis and Scientific Computing

−2 < Negative root < −1, as f(−2)× f(−1) < 0.

rn+1 = rn −
rn− e

rn

e/r2n
; r0 = −1−2

2 = −1.5. The first 4 iterates by

Newton’s method are: r1 = −1.7584068; r2 = −1.5166588; r3 =
−1.7498964; r4 = −1.5285389.

• Exercise 15:
15.a f(x) = 1

x − 3; root = 1
3 .

rn+1 = rn −
1
rn
−3
−1

r2n

= rn(2− 3rn). Restriction: 0 < rn < 2/3.

15.b
(i) r0 = 0.5 < 2/3 ⇒ r1 = 0.2500; r2 = 0.3125; r3 = 0.3320; r4 =
0.3333 this ⇒ convergence to root = 0.3333333...
(ii) r0 = 1 > 2/3 ⇒ r1 = −1; r2 = −5; r3 = −85; r4 = −21845 ⇒
divergence.

• Exercise 17:
17.a f(x) = 1

x2 − 7;negative root = −1√
7
.

rn+1 = rn
2 (3 − 7r2

n); restriction: −
√

(3/7) < rn < 0, with formula not
dividing by the iterate.

17.b Let r0 = 0.45 ⇒ r1 = 0.356063; r2 = −0.376098; r3 =
−0.377951;
r4 = −0.377964.

• Exercise 19: To compute
√
R, with R > 0, using Newton’s method:

19.a rn+1 = 1
2 (rn + R

rn
). No restriction on initial condition.

19.b rn+1 = 1
2rn(3− r2n

R). Restriction on initial condition:

0 < rn <
√

3R.
19.c rn+1 = 2Rrn

R+r2n
. No restriction on initial condition, as for large values

of x, c(x) ≈ x.

19.d rn+1 = rn
2 (3− r2n

R). Restriction on initial condition:

0 < rn <
√

3R.
19.e rn+1 = 2R rn

R+r2n
. No restriction on initial condition, as for large

values of x, c(x) ≈ x.

19.f rn+1 = rn
2 (3− r2n

R). Restriction on initial condition:

0 < rn <
√

3R.

• Exercise 21:
21.a This function has 3 roots: 0 < root1 < 1, as f(0) × f(1) < 0,
1 < root2 < 2, as f(1) × f(2) < 0 and −3 < root3 < −2, as f(−3) ×
f(−2) < 0.
21.b Using the bisection method:

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 285

n an bn rn+1 f(rn+1)
0 1 2 1.5 -
1 1.5 2 1.75 -
2 1.75 2 1.875 +
3 1.75 1.875 1.8125 -
4 1.8125 1.875 1.8438 +
5 1.8125 1.8438 1.8281 -
6 1.8281 1.8438 1.8359 +
7 1.8281 1.8359 1.8320 .

Using Newton’s method, the first iterates computing the root up to 3
decimals are:
r1 = 1.5000; r2 = 2.1429; r3 = 1.9007; r4 = 1.8385; r5 = 1.8343.

• Exercise 23: f(x) = p(x) = c2x
2 + c1x+ c0

23.a Since in Newton’s method:

|rn+1 − r| =
1

2
|f”(cn)

f ′(rn
|(rn − r)2 =

1

2

2|c2|
|p′(rn)|

(rn − r)2| ≤ |c2|
d

(rn − r)2

i.e., |rn+1 − r| = C(rn − r)2 with C = |c2|
d .

23.b Multiplying the last inequality by C and letting en = C|r − rn|
yields en+1 ≤ e2

n.
For n = 0, e0 = C|r − r0| < 1 if and only if |r − r0| < 1

C = d
|c2| .

Hence for such choice of r0 e0 < 1 implies e1 < e2
0 < 1 and by recurrence

en < 1, i.e. the sequence {rn} belongs to the interval:

(r − 1

C
, r +

1

C
) ⊆ (a, b).

23.c If e0 = 1
2 < 1 then e1 ≤ e2

0, e2 ≤ e2
1 ≤ e4

0 = e22

0 . By recurrence,

assuming en ≤ e2n

0 , then en+1 ≤ e2
n ≤ (e2n

0)2 = e2n+1

0 .

Thus, |rn−r||r0−r| = en
e0
≤ e2n−1

0 . Therefore, the smallest np for which
|rnp−r|
|r0−r| ≤ 2−p can be estimated using the inequalities:

e2np−1
0 ≤ 2−p < e2np−1−1

0 .

For e0 = 1
2 , this is equivalent to:

np − 1 <
ln(p+ 1)

ln 2
≤ np,

implying that np = d ln(p+1)
ln 2 e.

• Exercise 25:
The function f(x) = x3 − 2x + 2 has a unique negative root :−2 <

© 2014 by Taylor & Francis Group, LLC

286 Introduction to Numerical Analysis and Scientific Computing

root < −1, as f(−1)×f(−2) < 0. The initial conditions are obtained by
the bisection method applied twice on the interval (−2,−1). This gives:
r0 = −1.5000, r1 = −1.7500. The first 3 computed iterates using the
secant method are:
r2 = −1.7737, r3 = −1.7692, r4 = −1.7693

• Exercise 27:
27.a The function f(x) = ex − 3x has a unique root : 0 < root < 1, as
f(0)× f(1) < 0.
The initial conditions are obtained by the bisection method applied twice
on the interval (0, 1) ⇒: r0 = 0.5, r1 = 0.75.
The first computed iterates by the Secant method are:
r2 = 0.631975; r3 = 0.617418; r4 = 0.619078; r5 = 0.619061.
Therefore: 3 iterations are needed to compute root up to 5 decimals; the
4th one confirms reaching the required precision.
27.b The function f(x) = x− 2−x has a unique root : 0 < root < 1, as
f(0)× f(1) < 0.
The initial conditions are obtained by the bisection method applied twice
on the interval (0, 1) ⇒: r0 = 0.5, r1 = 0.75.
The first computed iterates by the Secant method are:
r2 = 0.642830; r3 = 0.641166; r4 = 0.641185; r5 = 0.641185.
Therefore: 3 iterations are needed to compute root up to 5 decimals; the
4th one confirms reaching the required precision.
27.c The function f(x) = −3x + 2 cos(x) − exhas a unique root : 0 <
root < 1, as f(0)× f(1) < 0.
The initial conditions are obtained by the bisection method applied twice
on the interval (0, 1) ⇒: r0 = 0.5, r1 = 0.25.
The first computed iterates by the Secant method are:
r2 = 0.231462; r3 = 0.229743; r4 = 0.229731; r5 = 0.229731.
Therefore: 3 iterations are needed to compute root up to 5 decimals; the
4th one confirms reaching the required precision.

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 287

Chapter 3

• Exercise 1:
1.a  3 4 3 5

1/3 11/3 −2 −5/3

2 -15/11 −19/11 −102/11

 .

By Back substitution: x3 = 5.3684⇒ x2 = 2.4737⇒ x1 = −7.
1.b  3 2 −5 0

4/3 −26/3 26/3 0

1/3 -5/13 4 4

 .

By Back substitution: x3 = 1⇒ x2 = 1⇒ x1 = 1
1.c  9 1 7 1

4/9 32/9 53/9 −4/9

8/9 73/32 −437/32 9/8

 .

By Back substitution: x3 = −0.082380 ⇒ x2 = −0.025733 ⇒ x1 =
0.17804

• Exercise 3:
3.a

IV = [1, 2, 3]; V = [2, 1, 3]; IV = [2, 1, 3] 8/9 11/3 58/9 −55/3

9 6 −5 132

1/9 -2/11 118/11 72


By Back substitution: x3 = 6.7119⇒ x2 = −16.797⇒ x1 = 29.593

3.b
IV = [1, 2, 3]; IV = [2, 1, 3]; IV = [2, 3, 1]

,  8/9 1/13 74/13 222/13

9 6 −5 132

1/9 13/9 62/9 101/3


By Back substitution: x3 = 222/74 = 3.0411 ⇒ x2 = 8.8040 ⇒ x1 =
10.487
3.c

IV = [1, 2, 3]; IV = [2, 1, 3]; IV = [2, 3, 1]

© 2014 by Taylor & Francis Group, LLC

288 Introduction to Numerical Analysis and Scientific Computing 3/5 1/8 −15/8 37/8

5 3 2 4

-1/5 8/5 −13/5 −1/5


By Back substitution: x3 = −37/15 = −2.4667 ⇒ x2 = −233/60 =
−3.8833⇒ x1 = 4.11667

• Exercise 5:
5.a

IV = [1, 2, 3, 4]; IV = [2, 1, 3, 4]; IV = [2, 4, 3, 1]; IV = [2, 4, 1, 3]

Modified augmented matrix Scales

1/7 1/12 65/12 7/12 2 6

7 6 7 9 0 9

3/7 -1/3 -8/65 −147/65 −49/65 4

5/7 12/7 −5 11/7 0 8

By Back substitution: x4 = 1
3 = 0.33333 ⇒ x3 = 1

3 = 0.33333 ⇒ x2 =
2
3 = 0.66667⇒ x1 = −4

3 = −1.3333
5.b

IV = [1, 2, 3]; IV = [2, 1, 3]; IV = [2, 3, 1]

Augmented matrix Scales

3/5 -3/7 −261/35 15 9

5 5 1 −20 5

0 7 5 0 7

By Back substitution: x3 = − 175
87 = −2.0115 ⇒ x2 = −125

87 =
−1.4360⇒ x1 = −188

87 = −− 2.1609

5.c

IV = [1, 2, 3, 4]; IV = [2, 1, 3, 4]; IV = [2, 1, 3, 4]; IV = [2, 1, 3, 4]

Modified augmented matrix Scales

1/9 64/9 10/9 7/9 41/9 8

9 8 8 2 4 9

0 0 4 1 0 4

7/9 -29/64 105/288 −131/128 −131/64 9

By Back substitution: x4 = 2⇒ x3 = −1/2⇒ x2 = 1/2⇒ x1 = 0

• Exercise 7:

7.a The augmented matrix of the system is: A|b =

(
10−5 1 7

1 1 1

)

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 289

The exact solution computed in high precision using Naive Gauss reduc-
tion or even Cramer’s rule leads to:

x ≈ 6, y ≈ 7

7.b In F(10, 4,−25, 26), (x = 0, y = 7).(
10−5 1 7

105 −105 −7 ∗ 105

)
leading by back substitution to a wrong solution: (x = 0, y = 7).

7.c

(
1 1 1

10−5 1 7

)
leading by back substitution to the solution: (x = −6, y = 7) that is
very close to the exact one.

• Exercise 9:

9.1.a L =


1 0 0 0

1/4 1 0 0
1/4 3/5 1 0
1/2 0 5/9 1

 ; U =


4 2 1 2
0 5/2 7/4 1/2
0 0 27/10 1/5
0 0 0 17/9


9.1.b - Determinant of A = Determinant of A = 4. 52 .

27
10 .

17
9 = 51

9.1.c

A−1 =


0.3921 −0.2941 0.1569 −0.2157
−0.0392 0.5294 −0.2157 −0.0784,
−0.0196 −0.2353 0.3922, −0.0392
−0.2353 0.1765 −0.2941 0.5294


• Exercise 11:

11.1.a

L =

 1 0 0
1/6 1 0
1/3 1/81 1

 ; U =

 6 8 9
0 8/3 7/2
0 0 25/16



P =

 0 0 1
1 0 0
0 1 0


11.1.b Determinant of A = (−1)2.Determinant of U = (6).(8

3).(25
16) = 25

11.1.c
(i) The Lower triangular system Ly = e3, gives y = [0 0 1]Tby Forward
substitution
(ii) The Upper triangular system Uc2 = y, gives c2 = [4/25 −
21/25 16/25]T by Backward substitution
11.2.a

© 2014 by Taylor & Francis Group, LLC

290 Introduction to Numerical Analysis and Scientific Computing

L =


1 0 0 0

1/6 1 0 0
2/3 1/2 1 0
2/3 −1/31 −1/39 1

 ; U =


6 6 4 2
0 6 16/3 26/3
0 0 −13/3 −8/3
0 0 0 253/39



P =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


11.2.b Determinant of A = (−1)2.Determinant of U = (6).(8

3).(25
16) = 25

11.2.c Solving successively:
(i) The Lower triangular system Ly = e3, gives y = [0 0 1]T by Forward
substitution
(ii) The Upper triangular system Uc2 = y, gives c2 = [4/25 −
21/25 16/25]T by Backward substitution.

• Exercise 13: B is not diagonally dominant as in the first row: |8| <
| − 1|+ |4|+ |9|.
The 3 matrices A, B and C satisfy the Principal Minor Property as all
their Principal submatrices have a non zero determinant.

• Exercise 15:
15.1

Tn =



a1 b1 0 0 ... 0
c1 a2 b2 0 ... 0
0 c2 a3 b3 ... 0
....
....
.... cn−2 an−1 bn−1

0 ... 0 0 cn−1 an


15.1.a At each reduction k = 1 → (n − 1): 1 multiplier is computed:
ck = ck/ak and 1 element is modified:ak+1 = ak+1 − ck.bk.
15.1.b

U =



a1 b1 0 0 ... 0
0 a2 b2 0 ... 0
0 0 a3 b3 ... 0
....
....
.... 0 an−1 bn−1

0 ... 0 0 0 an


; L =



1 0 0 0 ... 0
c1 1 0 0 ... 0

0 c2 1 0 ... 0

....

....

.... ck−2 1 0

0 ... 0 0 ck−1 1


15.1.c To compute the (n− 1) multipliers: (n− 1) flops are used and to
modify the (n − 1) elements: 2(n − 1) flops are used. ⇒ Total number

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 291

of flops: 3(n− 1).
15.2

UQn =



a1 b1 d1 0 ... 0
c1 a2 b2 d2 ... 0
0 c2 a3 b3 ... 0
....
.... ... cn−3 an−2 bn−2 dn−2

.... cn−2 an−1 bn−1

0 ... 0 0 cn−1 an


15.2.a At each reduction except the last, k = 1→ (n− 2):
1 multiplier is computed: ck = ck/ak and 2 elements are modified:
ak+1 = ak+1 − ck.bk and bk+1 = bk+1 − ck.dk.
At last reduction: 1 multiplier is computed: cn−1 = cn−1/an−1 and 1
element is modified: an = an − cn−1.bn−1

15.2.b

U =



a1 b1 d1 0 ... 0
0 a2 b2 d2 ... 0
0 0 a3 b3 ... 0
....
.... ... 0 an−2 bn−2 dn−2

.... 0 an−1 bn−1

0 ... 0 0 0 an


; L =



1 0 0 0 ... 0
c1 1 0 0 ... 0

0 c2 1 0 ... 0

....

....

.... ck−2 1 0

0 ... 0 0 ck−1 1


15.2.c To compute the (n − 1) multipliers: (n − 1) flops are used and
to modify the [2(n − 2) + 1] elements: [4(n − 2) + 2] flops are used. ⇒
Total number of flops: 5n-7.
15.3

LQn =



a1 b1 0 0 ... 0
c1 a2 b2 0 ... 0
d1 c2 a3 b3 ... 0
....
....
.... ... dn−3 cn−2 an−1 bn−1

0 ... 0 dn−2 cn−1 an


15.3.a At each reduction except the last k = 1→ (n− 2): 2 multipliers
are computed: ck = ck/ak and dk = dk/ak, and 2 element are modified:
ak+1 = ak+1 − ck.bk and ck+1 = ck+1 − dk.bk
At last reduction: 1 multiplier is computed: cn−1 = cn−1/an−1 and 1
element is modified: an = an − cn−1.bn−1.

© 2014 by Taylor & Francis Group, LLC

292 Introduction to Numerical Analysis and Scientific Computing

15.3.b

U =



a1 b1 0 0 ... 0
0 a2 b2 0 ... 0
0 0 a3 b3 ... 0
....
....
.... 0 an−1 bn−1

0 ... 0 0 0 an


; L =



1 0 0 0 ... 0
c1 1 0 0 ... 0

d1 c2 1 0 ... 0

....

....

.... cn−2 1 0

0 ... 0 dn−2 cn−1 1


15.3.c To compute the [2(n− 2) + 1] multipliers: [2(n− 2) + 1] flops are
used and to modify the [2(n− 2) + 1] elements: [4(n− 2) + 2] flops are
used. ⇒ Total number of flops: 6n− 9.

• Exercise 17:

– Column-Backward substitution:
Total number of flops:

∑n
j=2 1 + (

∑n
j=2

∑j−1
i=1 2) + 1 = n2,

as:
∑j−1
i=1 2 = 2(j − 1) and

∑n
j=2

∑j−1
i=1 2 =

∑n
j=2 2(j − 1) = n(n−

1).

– Row-Forward substitution:
Total number of flops: 1 + (

∑n
i=2

∑i−1
j=1 2) +

∑n
i=2 1 = n2,

as:
∑i−1
j=1 2 = 2(j−1) and

∑n
i=2

∑i−1
j=1 2 =

∑n
i=2 2(i− 1) = n(n−1).

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 293

Chapter 4

• Exercise 1:
D3 = {(0, 7), (2, 10), (3, 25), (4, 50)}.
l0(x) = −(x−2)(x−3)(x−4)

24 ; l1(x) = x)(x−3)(x−4)
4 ; l2(x) = −x(x−2)(x−4)

3 ; l3(x) =
x(x−2)(x−3)

8 ;
p0123(x) = 7l0(x) + 10l1(x) + 25l2(x) + 50l3(x)

• Exercise 3:
l0(x) = (x−x1)(x−x2)(x−x3)

(x0−x1)(x0−x2)(x0−x3) ; l1(x) = (x−x0)(x−x2)(x−x3)
(x1−x0)(x1−x2)(x1−x3) ;

l2(x) = (x−x0)(x−x1)(x−x3)
(x2−x0)(x2−x1)(x2−x3) ; l3(x) = (x−x0)(x−x1)(x−x2)

(x3−x0)(x3−x1)(x3−x2)

p0123(x) = y0l0(x) + y1l1(x) + y2l2(x) + y3l3(x)

• Exercise 5:
D4 = {(1,−1), (2,−1/3), (2.5, 3), (3, 4), (4, 5)}
5.a

i xi yi [., .] [., ., .] [., ., ., .] [., ., ., ., .]
0 1 −1

2/3
1 2 −1/3 4

20/3 −13/3
2 2.5 3 −14/3 19/9

2 2
3 3 4 −2/3

1
4 4 5

5.b
- Quadratic interpolating polynomial: p123(x) = −1+ 20

3 (x−2)− 14
3 (x−

2)(x− 2.5)⇒ f(2.7) ≈ p123(x) = 4.3200
- Best Cubic interpolating polynomial; p1234(x) = p123(x)+2(x−2)(x−
2.5)(x− 3)⇒ f(2.7) ≈ p1234(x) = 4.2360

• Exercise 7:
p(x) = p01234(x) +A(x− x0)(x− x1)(x− x2)(x− x3)(x− x4)
q(x) = p01234(x) +B(x− x0)(x− x1)(x− x2)(x− x3)(x− x4)
⇒ q(x)−p(x) = C(x−x0)(x−x1)(x−x2)(x−x3)(x−x4). Substituting
x by 4 in the identity above ⇒ C = − 443

120 ⇒ q(x) = p(x) − 443
120 (x +

1)(x)(x− 1)(x− 2)(x− 3).

• Exercise 9:
• Neville’s polynomial:

p01(x) = 2x+ 1; p12(x) = x+ 2⇒ p012(x) = (x−x0)p12(x)−(x−x2)p01(x)
x2−x0

=
−x2+5x+2

2 .

© 2014 by Taylor & Francis Group, LLC

294 Introduction to Numerical Analysis and Scientific Computing

• Newton’s polynomial:

p012(x) = [x0]+[x0+x1](x−x0)+[x0, x1, x2](x−x0)(x−x1) = −x2+5x+2
2

• Exercise 11:
11. a D5 = {(−2, 1), (−1, 4), (0, 11), (1, 16), (2, 13), (3,−4)}.
p01234(x) = [x0] + [x0 + x1](x − x0) + [x0, x1, x2](x − x0)(x − x1) +
[x0, x1, x2, x3](x − x0)(x − x1)(x − x2)+ [x0, x1, x2, x3, x4](x − x0)(x −
x1)(x− x2)(x− x3)⇒
p01234(x) = 1 + 3(x + 2) + 2(x + 2)(x + 1) − (x + 2)(x + 1)x, since
[x0, x1, x2, x3] = [x0, x1, x2, x3, x4] = 0
11. b q(x) = q012345(x) = q012354(x) = p01235(x)+A(x−x0)(x−x1)(x−
x2)(x− x3)(x− x5)
p(x) = p012345(x) = p012354(x) = p01235(x) + B(x − x0)(x − x1)(x −
x2)(x− x3)(x− x5)⇒
q(x)− p(x) = C(x− x0)(x− x1)(x− x2)(x− x3)(x− x5).
Substituting x by 2 in the identity above ⇒ C = 1

8 ⇒
q(x) = p(x) + 1

8 (x+ 2)(x+ 1)(x)(x− 1)(x− 3).

• Exercise 13:
13.a

i xi yi [., .] [., ., .] [., ., ., .]

0 −2 −1
2

1 −1 1 1/2
3 −37/21

2 0 4 −17/3
−8/3

3 1.5 0

p123(x) = 1 + 3(x+ 1)− 17
3 (x+ 1)x

13.b p(x) = p0123(x) = p1230(x) = p123(x) + [x0, x1, x2, x3](x +
1)x(x1.5) =
p123(x)− 37

21 (x+ 1)x(x− 1.5).
13.c Let (xA, yA) = (−0.5, 2), then:
q(x) = q01A23(x) = q0123A(x) = q0123(x) +C(x+ 2)(x+ 1)x(x− 1.5)⇒
q(x) = p(x) + C(x + 2)(x + 1)x(x − 1.5) Substituting x by −0.5 in the
identity above ⇒ C = [2− p(−0.5)]/⇒
q(x) = p(x) + (x+ 2)(x+ 1)x(x− 1.5)

• Exercise 15:

i xi yi [xi, xi+1]
0 0 1 2/3
1 1.5 2 8/3
2 2 6 −6
3 2.5 3 .

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 295

S(x) =

 S0(x) = 1 + 2
3x, 0 ≤ x ≤ 1.5

S1(x) = 2 + 8
3 (x− 1.5), 1.5 ≤ x ≤ 2

S2(x) = 6− 6(x− 2), 2 ≤ x ≤ 2.5

• Exercise 17:

i xi yi [xi, xi+1] zi
0 −1 3 −3 0
1 0 0 1 −6
2 1 1 1 8
3 2 2 . −6

S(x) =

 S0(x) = −3(x+ 1)2 + 3, −1 ≤ x ≤ 0
S1(x) = 7x2 − 6x, 0 ≤ x ≤ 1
S2(x) = −7(x− 1)2 + 8(x− 1) + 1, 1 ≤ x ≤ 2

• Exercise 19:

i xi yi [xi, xi+1] zi
0 −1 0 1 1
1 0 1 −2 1
2 1/2 0 2 −5
3 1 1 −1 9
4 2 0 . −11

S(x) =


S0(x) = x− 1, 1 ≤ x ≤ 2
S1(x) = 1 + (x− 2)− 6(x− 2)2, 2 ≤ x ≤ 2.5
S2(x) = −5(x− 2.5) + 14(x− 2.5)2, 2.5 ≤ x ≤ 3
S3(x) = 3 + 9(x− 3)− 10(x− 3)2, 3 ≤ x ≤ 4

• Exercise 21:
a = 2; b = 1; c = 0; d = 1; e = −1.

• Exercise 23:

i xi yi zi wi
0 1 0 8/3 0
1 2 1 −10/3 −8
2 3 0 −304/63 128/63
3 4 1 −167/63 20/3
4 5 0 −148/63 0

S(x) =


S0(x) = 8

3 (x− 1)− 8
9 (x− 1)3, 1 ≤ x ≤ 2.5

S1(x) = 1− 10
3 (x− 2.5)− 4(x− 2)2 + 632

189 (x− 2.5)3, 2.5 ≤ x ≤ 3
S2(x) = − 304

63 (x− 3) + 64
63 (x− 3)2 − 292

567 (x− 3)3, , 3 ≤ x ≤ 4.5
S3(x) = 1− 167

3 (x− 4.5) + 10
3 (x− 4.5)2 − 20

9 (x− 4.5)3, 4.5 ≤ x ≤ 5

© 2014 by Taylor & Francis Group, LLC

296 Introduction to Numerical Analysis and Scientific Computing

• Exercise 25:

i xi yi zi wi
0 −0.2 0.7121 1.759 0
1 −0.1 0.8790 2.574 16.29
2 0.1 1.0810 3.1186 −10.844
3 0.2 1.1279 2.5764 0

S(x) = 0.7121 + 1.759(x+ 0.2) + 13.575(x+ 0.2)3, −0.2 ≤ x ≤ −0.1
0.8790 + 2.574(x+ 0.1) + 8.145(x+ 0.1)2 + 4.5383(x+ 0.1)3, −0.1 ≤ x ≤ 0.1
1.0810 + 3.1186(x− 0.1)− 5.422(x− 0.1)2 − 9.0367(x− 0.1)3, 0.1 ≤ x ≤ 0.2

• Exercise 27:

S(x) =

 S0(x) = 2x2; 0 ≤ x ≤ 1
S1(x) = 3x2 − 2x+ 1; 1 ≤ x ≤ 2
S2(x) = 0.5x3 + 4x− 3; 2 ≤ x ≤ 3

• Exercise 29:

1. As shown below, the given set of data D4 verifies the following set
of values:

i xi yi zi wi
0 0 1 −0.69088 0
1 0.25 0.7788 −1.2726 −4.654
2 0.75 0.4724 −2.0055 1.7226
3 1 0.3679 −1.7903 0

h1 = 0.25; h2 = 0.5; h3 = 0.25.
• Using the Naive Gauss reduction, solve first the augmented sys-
tem:

A|r =

(
0.75/3 0.5/6 0.2720
0.5/6 0.75/3 0.47347

)
⇒ w2 = 1.7226; w1 =

−4.654
• z0 = [x0, x1]− h1

6 (w1 + 2w0) = −0.69088.

• Solve zi+1 = zi + hi+1

2 (wi + wi+1), for i=0,1,2⇒ z1 =
−1.2726; z2 = −2.0055; z3 = −1.7903.
• The equations of the Cubic spline are as follows:

S0(x) = 1− 0.69088x− 3.1027x3; if 0 ≤ x ≤ 0.25

S1(x) = 0.7788− 1.2726(x− 0.25)− 2.327(x− 0.25)2

+2.1255(x− 0.25)3; if 0.25 ≤ x ≤ 0.75

S2(x) = 0.4724− 2.0055(x− 0.75) + 0.8613(x− 0.75)2

−1.1484(x− 0.75)3; if 0.75 ≤ x ≤ 1

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 297

2.
∫ 0.25

0
e−x dx = 0, 2212 ≈

∫ 0.25

0
S0(x) dx = 0.225385.

3. f ′(0.5) ≈ S′1(0.5).

• Exercise 31:
- From the first criterion of the Definition of Spline function of degree 4,
, each of the si(x) is determined by 5 parameters. Hence, full obtention
of s(x) requires 5n unknowns.
- The second, third and fourth criteria impose now respectively 4(n −
1) continuity conditions for s, s

′
,s
′′
, and s

′′′
at the interior nodes, in

addition to the n+ 1 interpolation conditions
Hence for a total of 5n unknowns, one has a total of 4(n − 1) + n +
1 = 5n− 3 constraints. Obviously, to allow unique determination of the
interpolating spline of degree 4, there appears to be a deficit of three
constraints!

• Exercise 33: Upper Bounds on error terms for interpolating f(x) =
1

1+x2 over [−5, 5]:

1. Lagrange interpolation:

∀x ∈ [−5, 5], |f(x)− p0...10(x)| ≤ 1010

11!
max

x∈[−5,5]
|f (11)(x)|

2. Linear spline:

∀x ∈ [−5, 5], |f(x)− S(x)| ≤ Ch2 max
x∈[−5,5]

|f (2)(x)|, h = 1,

3. Quadratic spline:

∀x ∈ [−5, 5], |f(x)− S(x)| ≤ Ch3 max
x∈[−5,5]

|f (3)(x)|, h = 1,

4. Lagrange interpolation:

∀x ∈ [−5, 5], |f(x)− S(x)| ≤ h4 max
x∈[−5,5]

|f (4)(x)|, h = 1

C a generic constant independent from h.

• Exercise 35:
35.a

i xi yi zi wi
0 2 1 −26/15 0
1 3 0 7/15 22/5
2 4 1 −2/15 −28/5
3 5 −1 −44/15 0

© 2014 by Taylor & Francis Group, LLC

298 Introduction to Numerical Analysis and Scientific Computing

S(x) =

 S0(x) = 1− 26
15 (x− 2)− 11

15 (x− 2)3, 2 ≤ x ≤ 3
S1(x) = 7

15 (x− 3) + 1
5 (x− 3)2 − 11

7 (x− 3)3, 3 ≤ x ≤ 4
S2(x) = 1− 2

15 (x− 4)− 14
5 (x− 4)2 + 14

15 (x− 4)3, 4 ≤ x ≤ 5
f(3.4) ≈ S1(3.4) = 0.1181
35.b

i xi yi zi wi
0 2 1 −16/9 2
1 3 0 −4/9 2/3
2 4 1 −22/9 −14/3
3 5 −1 −43/9 0

S(x) =

 S0(x) = 1− 16
9 (x− 2) + (x− 2)2 − 2

9 (x− 2)3, 2 ≤ x ≤ 3
S1(x) = − 4

9 (x− 3) + 1
3 (x− 3)2 − 8

9 (x− 3)3, 3 ≤ x ≤ 4
S2(x) = 1− 22

9 (x− 4)− 7
3 (x− 4)2 − 7

9 (x− 4)3, 4 ≤ x ≤ 5
f(3.4) ≈ S1(3.4) = −0.1813

Chapter 5

• Exercise 1:
F.D. : f

′
(0) ≈ 4.960−5

0.1 = −0.400

C.D. : f
′
(0.1) ≈ 4.842−5

0.2 = −0.790

C.D. : f
′
(0.2) ≈ 4.651−4.960

0.2 = −1.545

C.D. : f
′
(0.3) ≈ 4.393−4.842

0.2 = −2.245

B.D. : f
′
(0.4) ≈ 4.393−4.651

0.1 = −2.580

• Exercise 3:
h = 0.125 : ∆hf(0)

h = 2.1260; h = 0.25 : ∆hf(0)
h = 2.2580; h = 0.375 :

∆hf(0)
h = 2.4026

h = 0.5 : ∆hf(0)
h = 2.5681; h = 0.625 : ∆hf(0)

h = 2.7646

• Exercise 5:
(i) D = φ(h) + c1h

1/2 + c2h
2/2 + c3h

3/2 + ... , i.e. D = φ(h) +O(h1/2)
(ii)D = φ(h2) + c1(h2)1/2 + d2(h2)2/2 + d3(h2)3/2 + ...
√

2(ii)−(i)√
2−1

: D = [
√

2φ(h2)−φ(h)√
2−1

]+d
′

2h
2+d

′

3h
3+...; i.e. D = [

√
2φ(h2)−φ(h)√

2−1
]+

O(h2)

• Exercise 7:
C.D. : ψπ/3(f(π/4)) = cos(π/4+π/3)−cos(π/4−π/3)

2π/3 = −0.5847;

ψπ/6(f(π/4)) = cos(π/4+π/6)−cos(π/4−π/6)
2π/6 = −0.6752

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 299

!f
′
(π/4) ≈ ψ1

π/6(f(π/4)) =
4ψπ/6(f(π/4))−ψπ/3(f(π/4))

3 = −0.7054;

f
′
(π/4) = −sin(π/4) = −0.7071; Relative Error=0.0024.

• Exercise 9:
9.a Φ0.25(f(0.25)) = 3.233−2.122

0.25 = 4.444 ; χ0.25(f(0.25)) = 2.122−1
0.25 =

4.488;
Ψ0.25(f(0.25)) = 3.233−1

0.5 = 4.466
9.b Ψ0.25(f(1)) = −1−4.455

0.5 = −10.91; Ψ0.5(f(1)) = −1.255−3.233
1 =

−4.488;
Ψ1(f(1)) = −2−1

2 = −1.5

Ψ1
0.25(f(1)) = 4Ψ0.25(.)−Ψ0.5(.)

3 = −13.051;Ψ2
0.25(f(1)) =

16Ψ1
0.25(.)−Ψ1

0.5(.)
15 =

−13.555
as: Ψ1

0.5(f(1)) = 4Ψ0.5(.)−Ψ1(.)
3 = −5.484

9.c F.D. : f
′
(0) ≈ 2.122−1

0.25 = 4.488 ; B.D. : f
′
(2) ≈ −2−(−1.8)

0.25 = −0.8

9.d F.D. : f
′′
(1) ≈ Φ0.25(f(1)) =

∆2
0.25(.)

(0.25)2 = −1.255−2(−1)+5.566
(0.25)2 =

100.9760
F.D. : f

′′′
(1) ≈ Φ0.25(f(1)) =

∆3
0.25(.)

(0.25)2 = 5.566−2(4.455)+3.233
(0.25)2 = −1.7760

• Exercise 11:
11.a ψ0.25(f(0.5)) = y8−2y6+y4

(0.25)2 = −0.61861280 ;ψ0.125(f(0.5)) =
y6−2y5+y4

(0.125)2 = −0.70367360

f
′′
(0.5) ≈ ψ1

0.125(f(0.5)) = 4ψ0.125(.)−ψ0.25(.)
3 = −0.73202720.

11.b f
′′′

(1) ≈ χ0.125(f(1)) = 6[xi−3, xi−2, xi−1, xi] = y8−3y7+3y6−y5
(0.125)3 =

0.57845760

• Exercise 13:
χ0.5(f(1)) = y8−y4

0.5 = 0.20223700; χ0.25(f(1)) = y8−y6
0.25 = 0.12491040;

χ0.125(f(1)) = y8−y7
0.125 = 0.09103000

χ1
0.25(f(1)) = 2χ0.25(.)−χ0.5(.)

1 = 0.04758380; χ1
0.125(f(1)) = 2χ0.125(.)−χ0.25(.)

1 =
0.0571496
χ2

0.125(f(1)) =
4χ1

0.125(.)−χ1
0.25(.)

3 = 0.0603382

• Exercise 15:
D1

0.125(0) = 4D0.125(0)−D0.25(0)
3 = 4(1.9624)−1.8880

3 , since:

D0.125(0) = 4(1.1108)−3(1)−1.1979
0.125 = 1.9624, and D0.25(0) =

4(1.1979)−3(1)−1.3196
0.25 = 1.8880

• Exercise 17:
I ≈M(0.125) = (y1 + y3 + y5 + y7)0.25 = 1.2866

• Exercise 19:
19. a h = 1

6 ⇒

I =

∫ 1

0

1

1 + x2
dx ≈M(

1

6
) = [f(

1

6
) + f(

3

6
) + f(

5

6
)]

2

6
= 0.78771

© 2014 by Taylor & Francis Group, LLC

300 Introduction to Numerical Analysis and Scientific Computing

19. b I = tan−11 = π/4⇒ |Error| = |π4 − 0.78771| = 0.0023118

f(x) = 1
1+x2 ; f

′′
(x) = 6x2−2

(1+x2)3 , and |f ′′(x)| ≤ max0≤x≤1 6x2−2

min0≤x≤1(1+x2)3 = 4

⇒ |Error| ≤ 4
63 = 0.018518.

• Exercise 21:
f(x) = e−x

2

and f
′′
(x) = e−x

2

(4x2 − 2) ≤ 2; h = 1
n

⇒ Error = 1
6

1
n2 f

′′
(c) ; |Error| ≤ 1

3n2 ≤ 10−4

2 ⇒ n ≥ 102
√

2
3 = 81.64⇒

n = 82.

• Exercise 23:
The definite integral I =

∫ b
a
f(x)dx is approximated by:

–
∑n
k=1 (xk − xk−1)f(xk−1) for “left composite rectangular” rule and

–
∑n
k=1 (xk − xk−1)f(xk) for “right composite rectangular” rule.

• Exercise 25:
25. a h = 0.5⇒ I ≈ T (0.5) = [f(0)+2(f(0.5)+f(1)+f(1.5)+f(2)+f(2.5)+f(3)+f(3.5))+f(4)]

2 .(0.5) =
21.8566
25. b Exact Value: I = 24−1

ln2 = 21.6404. |Error| = 0.2162.

|Error| ≤ 1

12
.(

1

2
)2.(ln2)2.16 = 0.1601.

• Exercise 27:
I =

∫ 6

0
sin(x2) dx

n+ 1 = 55⇒ n = 54⇒ h = 1/9.
f(x) = sinx2 ⇒ f (2)(x) = 2 cos 2x; f (4)(x) = −8 cos 2x;
•|ErrorT | ≤ 6

12 .(
1
9)2.2 = 1.2345× 10−2

•|ErrorM | ≤ 1
6 .(

1
9)2.2 = 4.1152× 10−3

•|ErrorS | ≤ 1
30 .(

1
9)4.8 = 4.0064× 10−5

• Exercise 29:
1st column: T (1) = y0+y8

2 = 1.2104 ; T (0.5) = (y0+2y4+y8
2)(0.5) =

1.2650 ;

T (0.25) = (y0+2(y2+y4+y6)+y8
2)(0.25) = 1.2793 ;

T (0.125) = (y0+2(y1+y2+y3+y4+y5+y6+y7)+y8
2)(0.125) = 1.2830 ;

2nd column: R1(0.5) = 4T (0.5)−T (1)
3 = 1.2832 ; R1(0.25) =

4T (0.25)−T (0.5)
3 = 1.2841 ; R1(0.125) = 4T (0.125)−T (0.25)

3 = 1.2842;

3rd column: R2(0.25) = 16R1(0.25)−R1(0.5)
15 = 1.284160000 ; R2(0.125) =

16R1(0.125)−R1(0.25)
15 = 1.284206666 ;

4th column: R3(0.125) = 64R2(0.125)−R2(0.25)
63 = 1.284207407 ;

• Exercise 31:
Let h = {h1, h2, ..., hn} and |h| = maxk hk. then, the composite
trapezoidal rule for a non-uniform partition is obtained from: T (h) =

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 301∑n
k=1 Tk =

∑n
k=1

hk
2 (f(xk−1) + f(xk), where hk = xk − xk−1.

As for the error term:∫ b

a

f(x)dx− T (h) =
n∑
k=1

∫ xk

xk−1

f(x)dx− Tk.

Using:∫ xk+1

xk

f(x)dx = Tk+
1

2

∫ xk+1

xk

(x− xk)(x− xk+1)f
′′
(c(x))dx, c(x) ∈ (xk, xk+1),

and the second mean value theorem:∫ b

a

f(x)dx− T (h) = − 1

12

n∑
k=1

h3
kf
′′
(ck), hk = xk − xk−1.

Hence using the intermediate value theorem:

|I − T (h)| ≤ 1

12
|h|2(b− a) max

x∈(a,b)
|f
′′
(x)|.

• I =
∫ 2

0
x2 ln(x2 + 1) dx ; h = 0.5;

1st method: S(0.5) = [f(0)+4(f(0.5)+f(1.5))+2f(1)+f(2)]
3 .(0.5) = 3.1092

2nd method: S(0.5) = 2
3M(0.5) + 1

3T (1) = 2
3 (2.7078) + 1

3 (3.9120) =
3.1092

• I =
∫ 2

1
x−1 dx ; h = 0.25;

S(0.25) = [f(1)+4(f(1.25)+f(1.75))+2f(1.5)+f(2)]
3 .(0.25) = 0.6932;

f(x) = 1
x ⇒ f (4)(x) = 24

x5 ; max1≤x≤2 |f (4)(x)| = 24 ;
|Error| ≤ 1

180 .24.(0.25)4 = 5.2083× 10−4.

• Exercise 33:
I =

∫ 2

0
x2 ln(x2 + 1) dx ; h = 0.5;

1st method: S(0.5) = [f(0)+4(f(0.5)+f(1.5))+2f(1)+f(2)]
3 .(0.5) = 3.1092

2nd method: S(0.5) = 2
3M(0.5) + 1

3T (1) = 2
3 (2.7078) + 1

3 (3.9120) =
3.1092

• I =
∫ 2

1
x−1 dx ; h = 0.25;

S(0.25) = [f(1)+4(f(1.25)+f(1.75))+2f(1.5)+f(2)]
3 .(0.25) = 0.6932;

f(x) = 1
x ⇒ f (4)(x) = 24

x5 ; max1≤x≤2 |f (4)(x)| = 24 ;
|Error| ≤ 1

180 .24.(0.25)4 = 5.2083× 10−4.

• Exercise 35:
35.a I = erf(x) = 2√

π

∫ x
0
e−t

2

dt ; |I−T (h)|
|I| ≤ (0.5).101−3 ; f(t) =

2√
π
e−t

2

; f
′′
(t) = 2√

π
4t2−2
et2

where |f ′′(t)| ≤ 4√
π
⇒ |Error| ≤ 1

3
√
π
. 1
n2 ≤ (0.42).10−2 ⇒ n2 ≥ 44.7⇒

© 2014 by Taylor & Francis Group, LLC

302 Introduction to Numerical Analysis and Scientific Computing

n ≥ 6.6 ≈ 7.
Therefore the number of required partition points is 8.
35.b If the Romberg process has to be applied following the composite
Trapezoidal rule, then: n = 2i = 8, meaning that one should start with
9 partition points.

Chapter 6

• Exercise 1:
I −M(h) =

∑m
i=1

h3
i

3 f
′′
(ci) = f

′′
(c)
∑m
i=1

h3
i

3

|I −M(h)| ≤ (h
2

3 |f
′′
(c)|) = h2

6 |f
′′
(c)|(b− a)

• Exercise 3:
I = S(h) + ah4 +O(h6) leads to I = 16S(h/2)−S(h)

15 +O(h6) = S(h/2) +
S(h/2)−S(h)

15 +O(h6)

• Exercise 5:
The estimate follows from the identities:
F (x) =

∫ d
c
f(x, y)dy, I = h

2

∑m
i=1(F (xi−1) + F (xi))− h2

12 fxx(ξ, η) and

F (xi) = k
2

∑n
j=1 f(xi, yj−1 + f(xi, yj) − k2

12fyy(xi, ζj) and through re-
peated applications of the intermediate value theorem.

• Exercise 7:
7.a

∫ 4

2

∫ 2

1
ln(2xy) dy dx = 1

2

∫ 4

2
[ln(2.5x) + ln(3.5x)]dx = 1

2 [ln(6.25) +
ln(12.25)] = 2.1691

7.b
∫ 3

2

∫ 4

2
(x2 + y3) dy dx =

∫ 3

2
(2x2 + 58.5) dx = 71.1250

• Exercise 9:
9.a

∫ 1

0

∫ 1

0
ey−x dy dx =

∫ 1

0

∫ 1

0
eye−x dy dx =

∫ 1

0
7.0157e−x dx = 18.1071

9.b
∫ π

0

∫ π
0
y cosxdy dx =

∫ π
0

2π cosx dx = 0

• Exercise 11:
11.a
(Midpoint)

∫ 1

−1

∫ 2

1

∫ 1

0
y dz dy dx =

∫ 1

−1

∫ 2

1
y dy dx =

∫ 1

−1
1.5 dx = 1.5

(Trapezoid)
∫ 1

−1

∫ 2

1

∫ 1

0
y dz dy dx =

∫ 1

−1

∫ 2

1
y dy dx =

∫ 1

−1
3
2 dx = 3

2
11.b
(Midpoint)

∫ 1

−1

∫ 1

0

∫ 2

1
xyz dx dy dz =

∫ 1

−1

∫ 1

0
1.5yz dy dz =

∫ 1

−1
0.75z dz =

0
(Trapezoid)

∫ 1

−1

∫ 1

0

∫ 2

1
xyz dx dy dz =

∫ 1

−1

∫ 1

0
3yz dy dz =

∫ 1

−1
3
2z dz = 0

© 2014 by Taylor & Francis Group, LLC

Numerical Solutions of Ordinary Differential Equations (ODEs) 303

Chapter 7

• Exercise 1:
1.a |f(t, y1)− f(t, y2)| = | sin(t)|.|y1 − y2| ≤ |y1 − y2|.
Hence, ∀t, y, the function f(t, y) is Lipshitz and the IVP has a unique
solution for all values of initial conditions.
1.b |f(t, y1) − f(t, y2)| = |et/2|.|e−y1/2 − e−y2/2| = |et/2|.|ec/2|.|y1 −
y2|, c ∈ (−y1,−y2) or c ∈ (−y2,−y1). Hence:
For a ≤ y0 ≤ b, a, b arbitrary and 0 ≤ t ≤ T , T arbitrary:

|f(t, y1)− f(t, y2)| ≤ e(T−a)/2|y1 − y2|.

The function f satisfying a Lipshitz condition, the IVP has a unique
solution for y0 ∈ (−∞,∞), 0 ≤ t ≤ T < ∞. 1.c |f(t, y1) − f(t, y2)| =

| 2t2

1+t4 |.|y1 − y2| ≤ L|y1 − y2|, where L = max∀t | 2t2

1+t4 |.
Hence, ∀t, y, the function f(t, y) is Lipshitz and the IVP has a unique
solution for all values of initial conditions.

• Exercise 3:
Picard’s iteration for y

′
= −4y + t, 0 ≤ t ≤ 1, y(0) = 1.

y1(t) = 1− 4t+
t2

2
; y2(t) = 1− 4t

15

2
t2 − 2t3

3

• Exercise 5:
Results of Heun’s method to solve:
5.a y

′
(t) = te3t − 2y2, 0 ≤ t ≤ 1, y(0) = 0, h = 0.2

5.b y
′
(t) = t+ (t− y)2, 0 ≤ t ≤ 2, y(0) = 1, h = 0.5

© 2014 by Taylor & Francis Group, LLC

304 Introduction to Numerical Analysis and Scientific Computing

• Exercise 7:
Results of Modified Euler’s method to solve:
7.a y

′
(t) = te3t − 2y2, 0 ≤ t ≤ 1, y(0) = 0, h = 0.2

7.b y
′
(t) = t+ (t− y)2, 0 ≤ t ≤ 2, y(0) = 1, h = 0.5

© 2014 by Taylor & Francis Group, LLC

Bibliography

[1] K.E. Atkinson. An Introduction to Numerical Analysis. John Wiley &
Sons, Inc. New York, NY, USA, 1989.

[2] G. Birkhoff and G. Rota. Ordinary Differential Equations. John Wiley
& Sons, Inc. New York, NY, USA, 1989.

[3] P. Bogacki and L.F. Shampine. A 3(2) pair of Runge-Kutta formulas.
Appl. Math. Letters, pages 1–9, 1989.

[4] R. Burden and J.D. Faires. Numerical Analysis, 9th edition. Brooks,
Cole, USA, 2010.

[5] J.C. Butcher. Numerical Methods for Ordinary Differential Equations.
John Wiley & Sons, Inc. New York, NY, USA, 2008.

[6] Chaitin, G.H. Randomness and mathematical proof, Scientific American
232, No. 5, May 1995,pp. 47-52.

[7] S. Chapra and R. Canale. Numerical Methods for Engineers, 6th edition.
McGraw Hill, 2010.

[8] Chatelin, F. CERFACS Publications, 1993.

[9] P. Cheney and D. Kincaid. Numerical Analysis and Mathematics of Sci-
entific Computing, 7th edition. Brooks/Cole, Boston, MA, USA, 2013.

[10] P. Ciarlet. Analyse Numérique Matricielle et Optimisation. Masson,
Paris, 1985.

[11] M. Crouzeix and Mignot A. Analyse Numérique des équations
Différentielles. Masson, Paris, 1984.

[12] J.R. Dormand and P.J. Prince. A family of embedded Runge-Kutta
formulae. J. Comp. Appl. Math., pages 19–26, 1980.

[13] H. Edelsbrunner. Geometry and Topology for Mesh Generation. Cam-
bridge University Press, Cambridge, UK, 2001.

[14] Erhel, J. Erreur de Calcul des ordinateurs, IRISA Publications, 1990.

[15] A. Gilat and V. Subramaniam. Numerical Methods for Engineers and
Scientists. John Wiley & Sons, Inc. New York, NY, USA, 2008.

305

© 2014 by Taylor & Francis Group, LLC

306 Introduction to Numerical Analysis and Scientific Computing

[16] G.H. Golub and C.F. Van Loan. Matrix Computations, 2nd edition.
John’s Hopkins University, 2001.

[17] H. Gould, J. Tobochnik, and W. Christian. An Introduction to Computer
Simulation Methods. 3rd edition. Pearson-Addison-Wesley, 2006.

[18] E. Hairer, S. Nørsett, and G. Wanner. Solving Ordinary Differential
Equations I: Nonstiff Problems. Springer Verlag, 1993.

[19] N. Higham. Accuracy and Stability of Numerical Algorithms, 2nd edition.
SIAM, 2002.

[20] Ø. Hjelle and M. Dæhlen. Triangulations and Applications. Mathematics
and Visualization Series, Springer 2006, 2006.

[21] E. Isaacson and H.B. Keller. Analysis of Numerical Methods, 4th edition.
John Wiley & Sons, Inc. New York, NY, USA, 1966.

[22] A. Iserles. A First Course in the Numerical Analysis of Differential Equa-
tions, 2nd edition. Cambridge University Press, Cambridge, UK, 2009.

[23] J.M. Muller. Arithmétique des Ordinateurs. Masson, Paris, 1982.

[24] Niederreiter, H. Quasi-Monte Carlo methods and pseudo-random num-
bers, Bull. Amer. Math. Soc. Volume 84, Number 6 (1978), 957-1041.

[25] J. Ortega and W. Poole. An Introduction to Numerical Methods for
Ordinary Differential Equations. Pitman, Mansfield, MA, USA, 1981.

[26] A. Quateroni, F. Saleri, and P. Gervasio. Scientific Computing with Mat-
lab and Octave, 3rd edition. Springer, Berlin Heidelberg, 2010.

[27] M.H. Schultz. Spline Analysis. Prentice Hall, Englewood Cliffs, 1973.

[28] L.F. Shampine and M.K. Gordon. Computer Solutions of Ordinary Dif-
ferential Equations. W.H. Freeman and Co., San Francisco, 1975.

[29] W.A. Smith. Elementary Numerical Analysis. Harper and Row, New
York, 1979.

[30] I. Sobol. A Primer for the Monte Carlo Method. CRC Press, Boca Raton,
USA, 1994.

[31] G. Strang. Linear Algebra and its Applications, 3rd edition. Philadelphia,
PA: Saunders, 1988.

[32] G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press,
1993.

© 2014 by Taylor & Francis Group, LLC

Designed for a one-semester course, Introduction to Numerical Analysis
and Scientific Computing presents fundamental concepts of numerical
mathematics and explains how to implement and program numerical
methods. The classroom-tested text helps students understand floating
point number representations, particularly those pertaining to IEEE simple
and double-precision standards as used in scientific computer environments
such as MATLAB® version 7.

Drawing on their years of teaching students in mathematics, engineering,
and the sciences, the authors discuss computer arithmetic as a source
for generating round-off errors and how to avoid the use of algebraic
expressions that may lead to loss of significant figures. They cover nonlinear
equations, linear algebra concepts, the Lagrange interpolation theorem,
numerical differentiation and integration, and ODEs. They also focus on the
implementation of the algorithms using MATLAB®.

Features
• Helps students understand floating point number representations,

particularly those pertaining to IEEE simple and double-precision
standards used in computer environments such as MATLAB®

• Explains how computer arithmetic is a source for generating round-off
errors

• Presents iterative methods for obtaining accurate approximations to
roots of nonlinear equations

• Covers numerical linear algebra concepts, the Lagrange interpolation
theorem, and formulae for numerical differentiation and integration

• Illustrates the solution of ODEs using Runge-Kutta methods
• Expresses each numerical method using either pseudo-code or a

detailed MATLAB® program
• Includes a large number of exercises and several computer projects

Each chapter ends with a large number of exercises, with answers to odd-
numbered exercises provided at the end of the book. Throughout the seven
chapters, several computer projects are proposed. These test the students’
understanding of both the mathematics of numerical methods and the art
of computer programming.

K20409

Mathematics

Introduction to Num
erical Analysis and Scientific Com

puting
N

assif • Fayyad
N

assif • Fayyad
Introduction to Num

erical Analysis and Scientific Com
puting

K20409_Cover.indd 1 6/26/13 10:47 AM

	Front Cover
	Contents
	Preface
	About the Authors
	List of Figures
	List of Tables
	Chapter 1: Computer Number Systems and Floating Point Arithmetic
	Chapter 2: Finding Roots of Real Single-Valued Functions
	Chapter 3: Solving Systems of Linear Equationsby Gaussian Elimination
	Chapter 4: Polynomial Interpolation and Splines Fitting
	Chapter 5: Numerical Differentiation and Integration
	Chapter 6: Advanced Numerical Integration
	Chapter 7: Numerical Solutions of Ordinary Differential Equations (ODEs)
	Answers to Odd-Numbered Exercises
	Bibliography
	Back Cover

